Ultrasound guidance improves the success rate of axillary plexus block: a meta-analysis

Qin Qina, Debao Yangb, Hong Xiea, Liyuan Zhangc, Chen Wanga,*

a Department of Anesthesiology and Critical Care, The Second Affiliate Hospital of Soochow University, Suzhou, Jiangsu Province, People’s Republic of China
b Department of Neurosurgery, Kowloon Hospital, Shanghai Jiaotong University School of Medicine, Suzhou, Jiangsu Province, People’s Republic of China
c Department of Radiotherapy, The Second Affiliate Hospital of Soochow University, Suzhou, Jiangsu Province, People’s Republic of China

Received 8 December 2014; accepted 27 January 2015
Available online 1 October 2015

Abstract

Objective: To evaluate the value of real-time ultrasound (US) guidance for axillary brachial plexus block (AXB) through the success rate and the onset time.

Methods: The meta-analysis was carried out in the Anesthesiology Department of the Second Affiliated Hospital of Soochow University, Suzhou, Jiangsu Province, China. A literature search of Medline, EMBASE, Cochrane database from the years 2004 to 2014 was performed. The literature searches were carried out using medical subject headings and free-text word: “axilla”, “axillary”, “brachial plexus”, “ultrasonography”, “ultrasound”, “ultrasonics”.

Two different reviewers carried out the search and evaluated studies independently.

Results: Seven randomized controlled trials, one cohort study and three retrospective studies were included. A total of 2042 patients were identified. 1157 patients underwent AXB using US guidance (US group) and the controlled group included 885 patients (246 patients using traditional approach (TRAD) and 639 patients using nerve stimulation (NS)). Our analysis showed that the success rate was higher in the US group compared to the controlled group (90.64\% vs. 82.21\%, \(p < 0.00001\)). The average time to perform the block and the onset of sensory time were shorter in the US group than the controlled group.

Conclusion: The present study demonstrated that the real-time ultrasound guidance for axillary brachial plexus block improves the success rate and reduce the mean time to onset of anesthesia and the time of block performance.

© 2015 Sociedade Brasileira de Anestesiologia. Published by Elsevier Editora Ltda. All rights reserved.

* Corresponding author.
E-mail: double.qq@126.com (C. Wang).
Introduction

In recent years, the people paid more and more attentions on the local anesthesia, especially on peripheral nerve block technique.¹,² The traditional nerve block needs the help of anatomical landmarks, the arterial pulse, needling of abnormal sensation or nerve stimulator, but, with the rapid development of technology of ultrasound device, under the guidance of ultrasound nerve block anesthesia as a new field of an ultrasonic applications are gradually being retired by the attention, ultrasonic technology is a fundamental change in the way nerve block. Brachial plexus block are the most common methods used in peripheral nerve block. Peripheral nerve stimulation may have a high degree of accuracy and reliability for the axillary nerve block, but sometimes cause failure or incomplete block, even when took multiple stimulation and injection.¹,⁴

Anesthesiologists have been able to observe the brachial plexus and the surrounding structures through the ultrasound guided puncture.⁵ So anesthesiologists can puncture into the target peripheral nerve accurately with real-time ultrasound. The injection process and the diffusion range of local anesthetics can also be observed by ultrasonography. The technology ensured the local anesthetic evenly spread to peripheral nerve, make local anesthetics fully infiltrate the nerve, significantly improve the success rate and reduce the complications.

Methods

Search strategy

The meta-analysis was carried out in the Anesthesiology Department of the Second Affiliated Hospital of Soochow University, Suzhou, Jiangsu Province, China. A literature search of Medline, EMBASE, Cochrane database from the years 2004 to 2014 was performed. The literature searches were carried out using medical subject headings and free-text word: "axilla", "axillary", "brachial plexus", "ultrasonography", "ultrasound", "ultronics". Two different reviewers carried out the search and evaluated studies independently.

Inclusion criterion

All randomized, non-randomized controlled clinical trials, which compared ultrasound-guided AXB with traditional approach or peripheral nerve stimulation included.

Exclusion criterion

Abstracts, letters, case reports, comments, and conference proceedings were not included in the review. We exclude studies with small-sized group (<40 patients).

Date collection

Two reviewers independently extracted the following from each study: first author, publication data, study design, inclusion criteria and exclusion criteria. All disagreements were resolved through discussion. Non-comparative studies, cases series, and case report were not included.
Table 1 Summary of published information from controlled studies. RCT, randomized controlled trials.

<table>
<thead>
<tr>
<th>Study</th>
<th>Type</th>
<th>Patients</th>
<th>Age (mean ± SD)</th>
<th>Gender (M/F)</th>
<th>Height (mean ± SD)</th>
<th>Weight (mean ± SD) (kg)</th>
<th>ASA-1/ASA-2/ASA-3</th>
</tr>
</thead>
<tbody>
<tr>
<td>Beyazit 2011</td>
<td>RCT</td>
<td>30 US</td>
<td>37.07 ± 16.04</td>
<td>13/17</td>
<td>167.01 ± 8.69 (cm)</td>
<td>77.41 ± 14.85</td>
<td>14/16/0</td>
</tr>
<tr>
<td></td>
<td></td>
<td>30 NS</td>
<td>39.96 ± 11.27</td>
<td>18/12</td>
<td>163.56 ± 7.24 (cm)</td>
<td>74.49 ± 11.26</td>
<td>12/18/0</td>
</tr>
<tr>
<td>Casati 2007</td>
<td>RCT</td>
<td>30 US</td>
<td>57 ± 17</td>
<td>17/13</td>
<td></td>
<td></td>
<td>14/14/2</td>
</tr>
<tr>
<td></td>
<td></td>
<td>29 NS</td>
<td>46 ± 19</td>
<td>16/13</td>
<td></td>
<td></td>
<td>15/11/3</td>
</tr>
<tr>
<td>Danelli 2012</td>
<td>RCT</td>
<td>25 US</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>25 NS</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Diogo 2009</td>
<td>Cohort study</td>
<td>20 US</td>
<td>39.75 ± 13.00</td>
<td>13/7</td>
<td>1.69 ± 7.96 (m)</td>
<td>78.1 ± 20.5</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>20 NS</td>
<td>45.15 ± 13.35</td>
<td>8/12</td>
<td>1.64 ± 79.51 (m)</td>
<td>72.9 ± 14.62</td>
<td></td>
</tr>
<tr>
<td>Luyet 2010</td>
<td>Retrospective</td>
<td>259 US</td>
<td>47 ± 19.65</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>343 NS</td>
<td>46 ± 18.16</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Luyet 2013</td>
<td>Retrospective</td>
<td>76 US</td>
<td>47 ± 18</td>
<td></td>
<td>44/32</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>74 NS</td>
<td>48 ± 18</td>
<td></td>
<td>41/32</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Nick 2008</td>
<td>Retrospective</td>
<td>535 US</td>
<td>47.4 ± 14.9</td>
<td></td>
<td>297/238</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>127 T</td>
<td>44.6 ± 14.8</td>
<td></td>
<td>73/54</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>56 NS</td>
<td>45.2 ± 14.8</td>
<td></td>
<td>34/22</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Site 2006</td>
<td>RCT</td>
<td>28 US</td>
<td>47.5 ± 16.5</td>
<td>13/15</td>
<td>164.5 ± 7.2 (cm)</td>
<td>80.6 ± 22.3</td>
<td>14/13/1</td>
</tr>
<tr>
<td></td>
<td></td>
<td>28 T</td>
<td>52.1 ± 19.1</td>
<td>16/12</td>
<td>169 ± 8.7 (cm)</td>
<td>83.8 ± 14.9</td>
<td>14/14/0</td>
</tr>
<tr>
<td>Soeding 2006</td>
<td>RCT</td>
<td>20 US</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>20 T</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Strub 2011</td>
<td>RCT</td>
<td>70 US</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>71 T</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Vincent 2007</td>
<td>RCT</td>
<td>64 US</td>
<td>44.3 ± 13.3</td>
<td>43/21</td>
<td>168.1 ± 23.8 (cm)</td>
<td>78.2 ± 18.9</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>62 NS</td>
<td>49.3 ± 14.6</td>
<td>30/32</td>
<td>167.0 ± 10.9 (cm)</td>
<td>74.9 ± 13.8</td>
<td></td>
</tr>
</tbody>
</table>

Statistical analysis

We used Review Manager 5.2 to conduct the review. The Mantel–Haenszel method was used for the statistical analysis of the success rate, the mean time to onset of anesthesia and the time of block performance. Dichotomous data were analyzed for odds ratio (OR) and 95% effectiveness confidence interval. \(p \leq 0.05 \) was considered statistically significant.

Results

Seven randomized controlled trials, one cohort study and three retrospective studies were included (Table 1).6,6–15 Our analysis showed that the success rate was higher in the US group compared to the controlled group (90.64% vs. 82.21%, total 1992 patients; Heterogeneity: \(\chi^2 = 15.17; p < 0.0001; I^2 = 47\% \); OR: 0.50; 95% CI [0.38, 0.65]) (Fig. 1). The average time to perform the block is shorter in the

![Figure 1](image.png)

Analysis of controlled studies for success rate of AXB: without ultrasound guidance vs. ultrasound guidance in the patients with AXB. 95% CI, 95% confidence interval; M-H, Mantel–Haenszel; df, degrees of freedom; OR, odds ratio; US, ultrasound.
US group than the controlled group (total 1706 patients; Heterogeneity: \(\chi^2 = 167.57, p < 0.00001; I^2 = 96\%\); OR: 3.88; 95% CI [3.11, 4.65]) (Fig. 2). The onset of sensory time is also shorter in the US group than the controlled group (total 109 patients; Heterogeneity: \(\chi^2 = 0.13, p = 0.004; I^2 = 0\%\); OR: 3.68; 95% CI [1.15, 6.21]) (Fig. 3). The data analysis of subgroup showed that the success rate was higher in the US group compared to the NS group (91.42% vs. 83.80%, total 1699 patients; Heterogeneity: \(\chi^2 = 9.51, p < 0.0001; I^2 = 47\%\); OR: 0.50; 95% CI [0.36, 0.69]) (Fig. 4).

Discussion

Axillary brachial plexus block is applicable to operation of elbow and on the lower part of elbow, can prevent the tourniquet pain, also can increase the blood flow of upper limb.\(^{16-18}\) Axillary brachial plexus can block including median nerve, ulnar nerve, musculocutaneous nerve, radial nerve and all terminal branch. Musculocutaneous nerve is usually issued from axillary Fasciculus lateralis, so the AXB is often incomplete. The nerve stimulator and ultrasound

Figure 2 Analysis of controlled studies for performance time of AXB: without ultrasound guidance vs. ultrasound guidance in the patients with AXB. 95% CI, 95% confidence interval; M-H, Mantel–Haenszel; df, degrees of freedom; OR, odds ratio; US, ultrasound.

Figure 3 Analysis of controlled studies for onset time of AXB: without ultrasound guidance vs. ultrasound guidance in the patients with AXB. 95% CI, 95% confidence interval; M-H, Mantel–Haenszel; df, degrees of freedom; OR, odds ratio; US, ultrasound.

Figure 4 Analysis of controlled studies for performance time of AXB: nerve stimulate vs. ultrasound guidance in the patients with AXB. 95% CI, 95% confidence interval; M-H, Mantel–Haenszel; df, degrees of freedom; OR, odds ratio; US, ultrasound; NS, nerve stimulate.
guides the axillary brachial plexus block significantly improve the success rate. Although the nerve stimulator could be able to locate the target nerve, but because the injection of local anesthetic nerve had no idea to guarantee encased completely, so the nerve stimulator block has 10–15% failure rate.\(^{1,2}\) Ultrasound monitoring can ensure that after the injection of drug, the nerve bundle was surrounding and infiltrating, thereby improving the axillary brachial plexus block success rate. However, the different levels of anesthesiology operator may not fully be able to distinguish each nerve in ultrasound images. Especially the radial nerve were difficult to locate, and is often confused with axillary artery of posterior wall.\(^{21}\)

The depth of insertion of the needle and the duration of axillary block placement may affect the pain intensity.\(^{6,13,22,23}\) Patients who get AXB with ultrasound (US) guidance were less painful and more comfortable than the patients get AXB with neurostimulation.\(^{24}\) It was suggested that ultrasound requested less number of needle passes than neurostimulation.\(^{7}\)

In conclusion, ultrasound guidance for axillary brachial plexus block improved the success rate and decreased the performance time and onset time. The visualization technology greatly reduced the possibility of occurrence of error, such as perforating vessels and local anesthetics poisoning and improved the safety. So it is the ideal option for upper limb operation.

Conflicts of interest
The authors declare no conflicts of interest.

Acknowledgements
This work is supported by Grant No. SZD0613 (to Dr. Wang) from the Technology Bureau of Suzhou, China. Dr. Wang also received support from the Revitalizing the Key Talent’s Subsidy Project in Science and Education (Jiangsu Province, China).

References