Effects of Dietary Zinc Levels on the Growth Performance, Organ Zinc Content, and Zinc Retention in Broiler Chickens

ABSTRACT

The objective of this study was to investigate the optimal zinc (Zn) requirement of broiler chickens based on Zn retention. On the day of hatch, 350 male Ross 308 broilers were randomly assigned to seven treatments with five replicates of ten birds each. Zinc was supplemented as ZnSO₄·7H₂O at 0, 20, 40, 60, 80, 100, or 120 mg/kg in the starter diet (fed from 1 to 21 d of age) and at 0, 16, 32, 48, 64, 80, or 96 mg/kg in the grower diet (fed from 22 to 42 d of age). The analyzed Zn levels were 34.98 and 27.57 mg/kg in the basal starter and grower diets, respectively. Supplemental Zn levels did not influence body weight gain, feed intake, feed conversion ratio, or liver Zn content of broilers at 21 and 42 d of age (p>0.05). Tibia ash Zn content of 21-d-old broilers increased when Zn supplementation level increased from 0 to 40 mg/kg Zn in (p<0.05). The highest breast muscle Zn content in 42-d-old broilers was observed when 100 and 80 mg Zn/kg was supplemented in the starter and grower diets, respectively. Fecal Zn content, Zn intake, Zn excretion, and Zn retention of 31- to 33-d-old broilers linearly increased with supplemental Zn levels (p<0.05). Zinc retention values, calculated as the difference between Zn intake and Zn excretion, were negative, about zero, and positive when starter/grower diets were supplemented with 0/0 and 20/16, 40/32, and 60/48 and 120/96 mg/kg, respectively. These results indicate that supplementing 40 and 32 mg Zn/kg in starter and grower diets, respectively, promote the growth performance of broiler chickens, while reduce Zn excretion in the environment.

INTRODUCTION

Zinc (Zn) is an essential trace element for poultry, and contributes for the maintenance of growth performance (Liu et al., 2011), skeletal development (Ao et al., 2007; Tomaszewska et al., 2017), and immune function (Kidd et al., 1996) of broiler chickens. The Feeding Standards of Chickens in China (Ministry of Agriculture of P. R. China, 2004) indicate that Zn levels of 100 and 80 mg/kg are suitable for broiler chickens from 1 to 21 and 22 to 42 d of age, respectively. However, the NRC (1994) recommends 40 mg/kg Zn for broilers from 1 to 42 d of age. Recent research has shown that the optimal levels of supplemental Zn for the performance of broiler chickens range between 12 and 60 mg/kg for (Ao et al., 2007; Huang et al., 2007; Liu et al., 2011). These data suggest that the Zn supplementation recommended by the Feeding Standards of Chickens in China (Ministry of Agriculture of P. R. China, 2004) may be higher than the Zn requirement for broiler chickens and should be revised.

Excessive Zn supplementation in chicken diets may cause environmental pollution due to Zn excretion in the feces, as fecal Zn content linearly increases with Zn dietary levels in broiler chickens and...
laying hens (Burrell et al., 2004; Kim & Patterson, 2004, 2005). Moreover, when Zn load in the soil increases, the Zn content in plant tissues also increases, hindering plant growth (Schmidt, 1997).

Therefore, this study was conducted to investigate the optimal Zn requirement of broiler chickens from 1 to 42 d of age based on Zn retention.

MATERIALS AND METHODS

All procedures applied in this study were approved by the Institute of Animal Science of the Chinese Academy of Agricultural Sciences and Shangqiu Normal University.

Birds, Diets, and Management

On the day of hatch, 350 male Ross 308 broilers were weighed and randomly allotted to seven treatments with five replicates of ten birds each. Broilers were reared in stainless steel cages (190 cm × 50 cm × 35 cm) in a room with controlled temperature of 33 °C from d 0 to 3, 30 °C from d 4 to 7, 27 °C from d 8 to 14, and 24 °C from d 15 to 42. A lighting program of 20 h of light and 4 h of dark was adopted.

Birds were fed according to a two-phase feeding period: starter (1 to 21 d of age) and grower (22 to 42 d of age). The basal diets formulated for each phase were based on corn-soybean meal and supplemented with a trace-mineral premix with no Zn (Table 1). The experimental diets (treatments) consisted of the supplementation of 0, 20, 40, 60, 80, 100, or 120 mg of Zn/kg diet in the starter phase, and of 0, 16, 32, 48, 64, 80, and 96 mg Zn/kg diet in the grower phase. The source of zinc supplemented to the basal diet was ZnSO\(_4\)·7H\(_2\)O, and the feeds were fed as mash. The birds were provided ad libitum access to feed and water during the entire experimental period.

Growth performance parameters

Feed intake (FI), body weight gain (BWG), and feed conversion ratio (FCR) were calculated for the periods 1 to 21 and 1 to 42 d of age. All dead birds were weighed and their weight was used to correct the FI.

Sample Collection

Fecal samples were collected from trays placed under each cage using the total fecal collection method from 31 to 33 d of age, and stored at –20 °C (Han et al., 2009). Before analysis, fecal samples were dried at 65 °C for 48 h and then ground to pass through a 1-mm mesh screen.

Zn retention was calculated as follows:

\[
\text{Zn retention (mg/bird)} = \frac{[\text{feed intake (g/bird)} \times \text{feed Zn content (mg/g)}] - [\text{fecal output (g/bird)} \times \text{fecal Zn content (mg/g)}]}{\text{body weight gain (g/bird)}}
\]
content (mg/g). The feed and fecal Zn contents were based on their analyzed values. The Zn content in the basal diet was also included in the Zn intake.

Statistical Analysis

Replicates were the experimental units used in the statistical analysis. Data were analyzed using the GLM procedure of SAS software (SAS Institute, 2002). Polynomial comparisons were performed to determine the linear and quadratic effects of supplemental Zn levels on the growth performance, organ Zn contents, and Zn retention. Means were compared by Tukey test when probability values were significant (p<0.05).

RESULTS AND DISCUSSION

Zn contents in the basal diets

The analyzed Zn contents in the basal starter (fed between 1 to 21 days of age) and grower (fed between 22 and 42 days) diets were 34.98 and 27.57 mg/kg, respectively (Table 2). Bartlett and Smith (2003), Ao et al. (2007), Huang et al. (2007), Sunder et al. (2008), Star et al. (2012), and Pacheco et al. (2017) determined that the Zn content of corn-soybean basal diets for broilers ranges from 25 to 35 mg/kg, indicating an average Zn content of 30 mg/kg. The Zn content of the basal diet cannot be overlooked when formulating broiler chicken feeds.

Table 2 – Calculated and analyzed Zn levels in experimental diets.

<table>
<thead>
<tr>
<th>Day 1–21</th>
<th>Day 22–42</th>
</tr>
</thead>
<tbody>
<tr>
<td>Calculated Zn (mg/kg)</td>
<td>Analyzed Zn (mg/kg)</td>
</tr>
<tr>
<td>0</td>
<td>34.98</td>
</tr>
<tr>
<td>20</td>
<td>31.22</td>
</tr>
<tr>
<td>40</td>
<td>84.15</td>
</tr>
<tr>
<td>60</td>
<td>104.22</td>
</tr>
<tr>
<td>80</td>
<td>118.13</td>
</tr>
<tr>
<td>100*</td>
<td>140.52</td>
</tr>
<tr>
<td>120</td>
<td>144.88</td>
</tr>
</tbody>
</table>

*Zn levels recommended by the Feeding Standards of Chickens in China (Ministry of Agriculture of P. R. China, 2004).

Growth Performance

The BWG, FI, and FCR of 21- and 42-d-old broilers were not influenced by supplemental Zn levels (p>0.05, Table 3). No linear or quadratic relationships were observed between supplemental Zn levels and growth performance parameters (p>0.05).

It is well known that Zn is an essential element for animals. Zn deficiency results in growth inhibition in animals (MacDonald, 2000). However, broiler performance was not affected by supplemental Zn levels in the present study. Previous studies had also observed that broiler growth was not affected by dietary Zn concentrations (Bartlett and Smith, 2003; Rossi et al., 2007; Sunder et al., 2008; Owens et al., 2009; Yang et al., 2011; Star et al., 2012; Liao et al., 2013; Pacheco et al., 2017; Zakaria et al., 2017). This is attributed to the Zn content of basal diets (about 30 mg/kg), which is adequate to maintain the growth of broiler chickens from 1 to 42 d of age. Therefore, in the present study, growth performance could not be used as a criterion to evaluate Zn requirement of broiler chickens. However, other studies showed that broilers fed diets with no supplemental Zn presented lower BWG and FI than those Zn-supplemented diets (Huang et al., 2007; Liu et al., 2011; Sarvari et al., 2015). Moreover, it was observed that high levels of supplemental Zn (500 to 1500 mg/kg) impaired the growth performance of broilers (Sandoval et al., 1998; Kim & Patterson, 2004).
Zn contents in bone, breast muscle, and liver

Tibial ash Zn content of 21-d-old broilers linearly increased between 0 and 40 mg Zn per kg addition (p<0.05, Table 4), but no differences in tibial ash Zn were observed when supplemental Zn levels ranged from 40 to 120 mg/kg. There was no effect of Zn levels on the tibial ash content of 42-d-old broilers (p>0.05). Research has shown that supplemental Zn increases blood Zn concentration in laying hens and broiler chickens (Tsai et al., 2016; Zakaria et al., 2017). A linear relationship was observed between 0 and 20 mg/kg supplemental Zn and bone Zn content in broiler chickens from 1 to 21 d of age (Ao et al., 2007; Star et al., 2012). Consistent results were observed between dietary levels of 0 and 40 mg Zn/kg in starter broilers in the present study. No significant differences were detected between 60–140 mg/kg supplemental Zn and bone Zn content (Huang et al., 2007; Liao et al., 2013). These data suggest that supplemental Zn increases Zn absorption in the blood and Zn deposition in bone, but that bones are not capable of further retaining Zn when supplemental Zn level is higher than 40 mg/kg.

Supplemental Zn levels did not influence breast muscle Zn content of 21-d-old broilers (p>0.05). On the other hand, in 42-d-old broilers, the supplemental Zn levels of 100 and 80 mg/kg diet promoted the highest breast muscle Zn contents (p<0.01), while the birds fed the highest supplemental Zn level (120 mg/kg) presented similar (p>0.05) breast muscle Zn contents as those fed the diets containing 0, 20, 40, and 60 mg supplemental Zn/kg. Sandoval et al. (1998) found that supplemental Zn levels increase muscle Zn content in broilers from 1 to 21 d of age. By contrast, Kim & Patterson (2004) found that supplemental Zn levels had no effect on the Zn level in breast muscles of broilers from 6 to 18 d of age. The effect of supplemental Zn level on muscle Zn content should be further clarified.

Supplemental Zn levels did not affect (p>0.05) broiler liver Zn content in the present study. In contrast, Sandoval et al. (1998) and Sunder et al. (2008) found that supplemental Zn levels linearly increased Zn content in the liver and kidneys of broilers. These differences may be due to supplemental Zn levels evaluated among studies. The present experiment evaluated supplemental Zn levels of 0 to 120 mg/kg, whereas Sandoval et al. (1998) and Sunder et al. (2008) used supplemental Zn levels of 0-320 and 0-1500 mg/kg, respectively.

Table 4 – Effects of supplemental Zn levels on organ Zn contents of broiler chickens

<table>
<thead>
<tr>
<th>Supplemental Zn (mg/kg)</th>
<th>Zn in tibial ash (μg/g)</th>
<th>Zn in fresh breast muscle (μg/g)</th>
<th>Zn in fresh liver (μg/g)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Day 1–21</td>
<td>Day 22–42</td>
<td>Day 21</td>
<td>Day 42</td>
</tr>
<tr>
<td>0</td>
<td>0</td>
<td>296.81a</td>
<td>349.58</td>
</tr>
<tr>
<td>20</td>
<td>16</td>
<td>371.71b</td>
<td>355.23</td>
</tr>
<tr>
<td>40</td>
<td>32</td>
<td>454.16a</td>
<td>380.77</td>
</tr>
<tr>
<td>60</td>
<td>48</td>
<td>456.96a</td>
<td>355.83</td>
</tr>
<tr>
<td>80</td>
<td>64</td>
<td>445.76a</td>
<td>361.63</td>
</tr>
<tr>
<td>100</td>
<td>80</td>
<td>450.57a</td>
<td>399.23</td>
</tr>
<tr>
<td>120</td>
<td>96</td>
<td>437.75a</td>
<td>365.57</td>
</tr>
<tr>
<td>SEM</td>
<td>10.85</td>
<td>4.96</td>
<td></td>
</tr>
<tr>
<td>Treatment</td>
<td><0.001</td>
<td>0.083</td>
<td></td>
</tr>
<tr>
<td>Zn</td>
<td><0.001</td>
<td>0.076</td>
<td></td>
</tr>
<tr>
<td>Quadratic</td>
<td><0.001</td>
<td>0.502</td>
<td></td>
</tr>
</tbody>
</table>

a–cMeans in the same column without a common superscript differ (p<0.05).

Zn retention

Increasing supplemental Zn levels linearly increased fecal Zn content, Zn intake, Zn excretion, and Zn retention of 31- to 33-d-old broilers (p<0.05, Table 5). When supplemental Zn levels increased from 0 to 120 and 96 mg/kg in the starter and grower diets, respectively, fecal Zn content, Zn intake, and Zn excretion increased from 137.42 to 388.84 μg/g, from 6.09 to 32.99 mg, and from 7.49 to 26.69 mg, respectively. Zn intake was lower than the Zn excretion at 0 to 20 and 16 mg/kg supplemental Zn in the starter and grower diets, respectively. Zn intake was approximately equal to Zn excretion when in the starter and grower diets were supplemented with 40 and 32 mg Zn/kg, and higher than Zn excretion when supplemental Zn levels were increased from 60 to 120 and 48 to 100 mg/kg in the starter and grower diets, respectively. Zinc retention was calculated as the difference between Zn intake and Zn excretion. Broilers presented negative Zn retention values when fed 0 and 20 mg Zn/kg in the
Zhang TY, Liu JL, Zhang JL, Zhang N, Yang X, Qu HX, Xi L, Han JC

Effects of Dietary Zinc Levels on the Growth Performance, Organ Zinc Content, and Zinc Retention in Broiler Chickens

The corn-soybean basal diet contained approximately 30 mg/kg Zn. Supplemental Zn levels of 40 and 32 mg/kg in starter (1 to 21 days of age) and grower (22 to 42 days of age) diets, respectively, are sufficient to promote adequate growth performance of broiler chickens, also taking into consideration that Zn excretion in the feces may pose environmental pollution risks.

ACKNOWLEDGMENTS

This study was supported by the Special Fund for Agro-Scientific Research in the Public Interest of China (201303091), the Innovation Scientists and Technicians Troop Construction Projects of Henan Province (C20130058), and the Foundation of the Education Department of Henan Province (16A230003).

REFERENCES

CONCLUSIONS

The present study also showed that supplemental Zn did not significantly increase Zn content in the muscle, bone, or organs of 42-d-old broiler chickens. Therefore, most of the supplemental Zn was not retained in the chickens’ bodies. Excessive Zn is excreted in the environment by the feces if Zn intake is higher than Zn requirements. Zn excretion and its effects on the environment should be considered when supplementing Zn in broiler chicken diets.
Effects of Dietary Zinc Levels on the Growth Performance, Organ Zinc Content, and Zinc Retention in Broiler Chickens

MacDonald RS. The role of zinc in growth and cell proliferation. Journal of Nutrition 2000;130:1500s–1508s.

