

ISSN 1516-635X 2021 / v.23 / n.3 / 001-006

http://dx.doi.org/10.1590/1806-9061-2020-1293

Technical Note

■Author(s)

Zou Y ^ı	(D) https://orcid.org/0000-0002-8808-5269
Liu S ⁱ	(D) https://orcid.org/0000-0001-7219-5394
Peng Y ⁱ	ip https://orcid.org/0000-0001-8119-422X
Chen D ⁱ	ip https://orcid.org/0000-0003-4009-8770
Tan H ⁱ	ip https://orcid.org/0000-0002-3440-5394

Poultry Business Division of Wens Foodstuff Group Co., LTD., Ministry of Agriculture Key Laboratory of Animal Nutrition and Feed Science, Department of Poultry Nutrition and Feed Science, Xinxing County, Yunfu City, Guangdong Province, China.

Mail Address

Corresponding author e-mail address Tan Huize Xinxing County, Yunfu City, Guangdong Province, 527400, China. Phone: 0766 2929052 Email: tanhuize5@163.com

■Keywords

Net energy, Chinese Yellow Chickens, prediction equation.

Submitted: 12/December/2020 Approved: 19/March/2021

Net Energy Prediction Equations Used in Chinese Yellow Chickens for Energy Evaluation

ABSTRACT

This study assessed whether the net energy (NE) system is beneficial for determining the efficiency of feed utilization in Chinese Yellow Chickens. A total of 5,600 male Chinese Yellow Chickens were assigned to eight dietary treatments (ten replicate pens per treatment and 70 chickens per pen) of differing apparent metabolizable energy (AME) and NE values. A highly significant linear correlation between dietary energy and feed conversion ratios (FCR) was observed (p<0.01). The linear regression equation between metabolizable energy (ME) and FCR was: AME=-1435.5×F/G+6278.2, where R^2 =0.8272. The linear regression equation between NE and FCR was NE=-1350.1×F/G+5340.9, and R^2 =0.9551. The R^2 of FCR (0.9551) for diets formulated using NE values was higher than the R^2 of FCR (0.8272) for diets prepared on the basis of the ME system. We conclude that the NE system is more accurate than the AME system for determining the energy requirements of Chinese Yellow Chickens.

INTRODUCTION

Broilers ingest nutrients, including carbohydrates, proteins and lipids. Chemical energy is released and converted into usable energy for tissues and cells to maintain their vital functions. Accurate evaluation of the effective energy value of feed ingredients plays a vital role in broiler production. The metabolizable energy (ME) system is widely used in feed formulation for broilers around the world. Although the ME system has been used as the default system in the broiler industry, it has numerous limitations. Some studies found that the ME system overestimated the energy utilization rate of crude protein and crude fibre, and underestimated the utilization rate of fat and starch. Net energy (NE), which refers to the residual energy in the diet, is equivalent to ME minus total heat production (HP) during in-vivo metabolism, and has also been used in animal production. Heat increment (HI) values from different nutrients differ. Thus, the HI values of protein and carbohydrate were found to be similar, but both were significantly higher than the HI of fat.

The NE system is attracting increasing attention in both academia and industry. Noblet (1994) used respiration calorimetry to study the NE system in pigs, and established regression equations between NE values of feed ingredients and their chemical components. The National Research Council used these regression equations to calculate the NE values of feed ingredients in their database. In recent years, the NE system has been applied to broilers. In a thorough and detailed study, Wu *et al.* (2019) established regression equations between the NE values of broiler feed ingredients and their chemical components. However, no subsequent study has been carried out to compare NE and ME systems in broilers, particularly under practical conditions. This

study aimed to estimate the NE values of commonly used feed ingredients for the Chinese Yellow Chicken. The correlation between FCR and feed energy gradient was used to evaluate the accuracy of the NE system compared with the ME system for Chinese Yellow Chickens.

MATERIALS AND METHODS

Animals, diets, and treatments

This study was conducted at Wens Foodstuffs Group Co., Ltd. (Guangzhou, China) and was approved by the Animal Care and Handling Procedures of the Institute of Animal Science, Chinese Academy of Agricultural Sciences, Beijing, China. A total of 5,600 Chinese Yellow Chickens (body weight ~35 g) used in this study were selected from the same farm on the basis of their genetic background and health status. The chickens were divided among eight dietary treatments. Each treatment had ten replicate pens and each pen (2.5 \times 4 m) housed 70 chickens. Mash diets were fed in a three-phase feeding program as follows: starter (days 1 to 21), grower (days 22 to 42), and finisher (days 43 to 58). The eight diets were formulated to provide a similar nutrient profile but with different energy levels (Table 1). All treatment groups were fed with the same diet in

Table 1 – Ingredients and calculated nutrient composition of experimental diets.

Phase Treatment	Starter				Gro	wer							Fini	sher			
Ingredients, g/kg	T1-T8	T1	T2	Т3	T4	T5	T6	Τ7	T8	T1	T2	Т3	T4	T5	T6	T7	T8
Corn	634.5	260.0	654.1	675.1	270.0	260.0	680.8	702.1	509.0	204.0	637.0	567.2	216.0	339.1	583.0	444.7	317.7
Soybean meal	240.1	60.0	98.1	124.5	60.0	60.0	132.0	144.0	60.0	60.0	101.6	96.6	52.0	60.0	104.6	88.9	60.0
Cottonseed meal	40.0	21.0							23.0	10.0	25.0	15.0			11.0	21.0	
Corn gluten meal	40.0	26.2	80.0	80.0	15.9	15.9	80.0	80.0	14.7	14.7	80.0	80.0	23.2	29.3	80.0	80.0	36.5
Wheat										50.0	50.0	50.0	50.0	50.0	50.0	50.0	50.0
Soybean oil	4.0	40.0	4.2	9.9	40.0	40.0	17.3	22.1	40.0	50.0	18.2	28.0	55.0	50.0	34.6	49.0	60.0
Rapeseed meal		100.0	19.5		96.2	94.0			100.0	100.0			100.0	100.0			88.5
Pea		100.0	100.0	66.3	48.4	100.0	45.5	7.4		100.0	46.4	100.0	47.7	36.7	95.6	100.0	29.0
Barely		300.6			300.1	300.0			83.0	285.0		22.0	299.7	196.0		125.0	211.0
Extruded soybean		21.0			100.0	91.0			100.0	60.0			90.0	80.0			80.0
Palm Ouricuri Meal		30.0			30.0				30.0	30.0			30.0	22.0			30.0
Lysine-H ₂ SO ₄ (70%)	4.9	6.4	7.2	7.2	5.3	4.7	7.3	7.5	6.0	4.2	6.9	6.2	4.6	4.8	6.1	6.4	5.1
DL-Methionine (98%)	1.8	3.0	2.5	2.6	2.9	3.0	2.5	2.5	2.8	2.2	1.8	1.8	2.0	1.9	1.8	1.9	1.9
Threonine (98%)	0.4	1.8	1.3	1.2	1.5	1.5	1.2	1.1	1.5	1.3	1.0	1.0	1.3	1.1	1.0	1.1	1.2
Salt	3.5	3.5	3.6	3.6	3.5	3.5	3.6	3.6	3.4	2.9	3.0	3.1	2.9	2.9	3.1	3.1	2.9
Na-Bicarbonate										1.5	1.5	1.5	1.5	1.5	1.5	1.5	1.5
Limestone	13.7	13.4	14.2	14.2	13.2	13.3	14.2	14.1	13.3	12.9	14.1	14.0	12.9	13.0	13.9	14.0	13.0
Dicalcium phosphate	12.4	8.6	10.8	11.0	8.5	8.6	11.1	11.1	8.9	6.9	9.2	9.2	6.9	7.3	9.4	9.0	7.4
^a Premix compound	4.0	4.0	4.0	4.0	4.0	4.0	4.0	4.0	4.0	4.0	4.0	4.0	4.0	4.0	4.0	4.0	4.0
Choline chloride (60%)	0.8	0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.4	0.4	0.4	0.4	0.4	0.4	0.4	0.4
Total Batch	1000	1000	1000	1000	1000	1000	1000	1000	1000	1000	1000	1000	1000	1000	1000	1000	1000
Calculated nutrient leve	ls, %																
Crude protein	20.50	17.47	17.5	17.5	17.5	17.51	17.5	17.5	17.5	17.49	17.51	17.49	17.49	17.5	17.49	17.5	17.5
Ether extract	2.96	6.71	2.77	3.33	8.1	7.68	4.06	4.56	8.32	8.21	4.05	4.91	9.24	8.6	5.56	6.86	9.6
crude fiber	2.43	4.74	2.28	2	4.57	4.2	1.93	1.8	3.88	4.66	2.02	2.2	4.49	3.95	2.08	2.54	3.97
Calcium, %	0.90	0.85	0.85	0.85	0.85	0.85	0.85	0.85	0.85	0.8	0.8	0.8	0.8	0.8	0.8	0.8	0.8
Available phosphorus	0.351	0.31	0.311	0.31	0.311	0.31	0.31	0.309	0.31	0.28	0.281	0.28	0.281	0.28	0.281	0.281	0.28
Na+	0.16	0.16	0.16	0.16	0.16	0.16	0.16	0.16	0.16	0.18	0.18	0.18	0.18	0.18	0.18	0.18	0.18
K+	0.73	0.57	0.44	0.47	0.67	0.65	0.48	0.51	0.65	0.62	0.47	0.44	0.65	0.63	0.44	0.45	0.62
AME, kcal/kg	2900	2920	2955	3000	3000	3014	3046	3080	3080	3022	3059	3100	3100	3120	3148	3180	3180
NE, kcal/kg (prediction)	2148	2210	2210	2249	2282	2290	2290	2320	2346	2300	2300	2338	2368	2379	2380	2414	2433
SID Lysin	1.05	0.96	0.96	0.96	0.96	0.96	0.96	0.96	0.96	0.90	0.90	0.90	0.90	0.90	0.90	0.90	0.90
SID Met + Cys	0.71	0.75	0.75	0.75	0.75	0.75	0.75	0.75	0.75	0.67	0.67	0.67	0.67	0.67	0.67	0.67	0.67
SID Threonin	0.65	0.62	0.62	0.62	0.62	0.62	0.62	0.62	0.62	0.59	0.59	0.59	0.59	0.59	0.59	0.59	0.59
SID Arginin	1.17	0.86	0.81	0.83	0.87	0.87	0.83	0.82	0.91	0.9	0.86	0.85	0.87	0.86	0.85	0.85	0.85
SID Tryptophan	0.18	0.15	0.12	0.13	0.16	0.15	0.13	0.13	0.16	0.15	0.13	0.12	0.15	0.15	0.13	0.12	0.15

a Premix compound provided per kg of diet: retinol, 3.0 mg; cholecalciferol, 0.045 mg; tocopherol, 20mg; menadione, 3.5 mg; riboflavin, 8.0 mg; niacin, 35 mg; D-pantothenic acid, 10 mg; cobalamin, 0.015 mg; biotin, 0.18mg; folacin, 1.2mg; thiamine, 2.0 mg; pyridoxine, 3.5 mg; 8.0 mg of Cu from CuSO4·5H2O; 80 mg of Zn from ZnSO4·H2O; 100 mg of Mn from MnSO4·H2O; 60 mg of Fe from FeSO4·H2O; 0.7 mg of I from KI; 0.3 mg of Se from Na2SeO3.

the starter phase. Diets 1 through 8 were formulated to provide 2920 (2210), 2955 (2210), 3000 (2249), 3000 (2282), 3014 (2290), 3046 (2290), 3080 (2320), 3080 (2346) kcal AME (or NE)/kg, respectively, in the grower phase. Diets 1 through 8 were formulated to provide 3022 (2300), 3059 (2300), 3100 (2338), 3100 (2368), 3120 (2380), 3148 (2280), 3180 (2414), 3180 (2433) kcal AME (NE)/kg, respectively, in the finisher phase. The AME values of feed ingredients, crude protein and crude fat levels are shown in Table 2. The NE values of feed ingredients were calculated using the predictive equation reported by Wu et al. (2019). The room temperature was maintained at 32-34°C for the first 3 days, and then reduced by 2-3°C per week to a final temperature of 20°C. The chickens had ad libitum access to feed and water throughout the experimental period. At 21, 42, and 58 days of age, the weights of the chickens were measured after 12-h feed deprivation, and feed consumption was recorded to calculate the average daily feed intake (ADFI), the average daily gain (ADG), and the feed: gain ratio (F/G).

Table 2 – Main measured characteristics of the diets used in the NE prediction equation.

1				
Items		ion, % DM asis		lues, Kcal/ DM
items	CPa	EEa	AMEb	NEc
Corn	9.07	4.07	3686	2846
Soybean meal	53.51	2.03	2791	1836
Cottonseed meal	52.82	2.18	2437	1565
Corn gluten meal	67.43	0.94	3928	2623
Wheat	13.64	3.98	3750	2865
Soybean oil		100.00	9091	7793
Rapeseed meal	42.67	3.47	2469	1667
Pea	21.28	1.77	3058	2258
Barely	10.09	2.47	2976	2273
Extruded soybean	38.97	21.20	3981	2996
Palm Ouricuri Meal	16.13	10.42	1954	1490
Lysine-H ₂ SO ₄ (70%)	78.57		2296	1267
DL-Methionine (98%)	58.99		4684	3263
Threonine (98%)	73.88		3077	1908

^a CP and EE were measured value.

^bAME data from poultry feed database of Wens Foodstuff Group.

 c NE predicted using regression equations: NE (MJ/kg DM basis) = 0.781 \times AME (MJ/ kg DM basis) – 0.028 \times CP (% DM basis) + 0.029 \times EE (% DM basis) produced from Wu et al (2019).

Statistical analyses

The data were analyzed by one-way analysis of variance (ANOVA) using SAS version 9.4 (SAS Inst. Inc., Cary, NC). The performance of each pen was used as the experimental unit. All data were tested for normality and homoscedasticity before analysis using the Shapiro–Wilk and Levene tests, respectively.

Significant differences among treatments were determined by Duncan's multiple range test (Duncan, 1955). Significance was set at p<0.05 and values are presented as means \pm standard error of the mean (SEM). The linear regression model is expressed as Y = β 0+ β 1×X, R^2 , where Y is the energy level, X is the response variable (ADG, ADFI, or F/G), and β 0 and β 1 are regression parameters.

RESULTS AND DISCUSSION

The more accurate the energy system, the better the prediction of production performance. In pigs, NE, which is a measure of 'true' energy available for maintenance and production, predicted the production performance more accurately than the digestible energy (DE) or ME did. In chickens, the efficiency of AME and NE for prediction of production were less dependent on dietary nutrient contents than they were in pigs, suggesting that the NE system might not be more suitable than the AME system. Our study assessed whether the NE system was advantageous to determine the efficiency of feed utilization in Chinese Yellow Chickens. In the starter phase of the experiment, a large number of unconventional raw materials were used and formulations differed among treatments. To avoid the effects of these factors on the analysis, the starter phase was excluded from the experiment.

Dietary energy affects broiler growth performance in terms of ADG and ADFI. Live weight gain is higher, feed intake is lower, and food conversion efficiency improves with the increase in dietary energy levels. In the present study, an increase in AME content from 2975 to 3117 kcal/kg was associated with an increase by ADG to 2.85%. Accordingly, the ADFI and FCR of the chickens decreased by 0.69% and 3.51%, respectively (Table 3). The correlations between energy value and production performance indicators suggested significant differences among ADG, ADFI and FCR, favoring the use of NE. In contrast to ADG and ADFI, FCR significantly changed with dietary energy values. However, there were no significant differences in production performance between the different treatments with graded levels of dietary energy (p>0.05), because the chickens were fed at the same growth stage. In the later stages of the diet, FCR values decreased as ME of the diet increased, and the differences became highly significant (p < 0.01). In addition, a strong linear correlation between ME values in the diets and FCRs in chickens was found. with correlation coefficients of 0.373, 0.9287 and

Frinase item 29 Starter Initial BW (kg) 29 (1-21 days) ADG (g/day ⁻¹) ADG (g/day ⁻¹) ADF (g/day ⁻¹) ADF (g/day ⁻¹) F/G (g/day ⁻¹) 29 Grower Final BW (kg) 29 (22-42 days) ADG (g/day ⁻¹) ADF (g/day ⁻¹) ADF (g/day ⁻¹) F/G (day ⁻¹) ADF (g/day ⁻¹) A		Treatment 2	Treatment 3	Treatment 4	Treatment 5	Treatment 6	Treatment 7	Treatment 8	SEM	<i>p</i> value
ays) Final BW (kg) Final BW (kg) ADG (g/day ⁻¹) ADFI (g/day ⁻¹) F/G Initial BW (kg) ADFI (g/day ⁻¹) ADFI (g/day ⁻¹) F/G ADFI (g/day ⁻¹) F/G ADS) Final BW (kg)				Energy (Kcal/kg)	Kcal/kg)					
ays) Final BW (kg) Final BW (kg) ADG (g/day ⁻¹) ADFI (g/day ⁻¹) F/G Initial BW (kg) ADFI (g/day ⁻¹) ADFI (g/day ⁻¹) F/G ADFI (g/day ⁻¹) F/G ADS) Final BW (kg)	AME NE	AME NE	AME NE	AME NE	AME NE	AME NE	AME NE	AME NE		
ays) Final BW (kg) Final BW (kg) ADG (g/day ⁻¹) F/G Initial BW (kg) Final BW (kg) ADFI (g/day ⁻¹) ADFI (g/day ⁻¹) F/G ADFI (g/day ⁻¹) F/G ADFI (g/day ⁻¹) F/G ADS) Final BW (kg)	2900 2148	2900 2148	2900 2148	2900 2148	2900 2148	2900 2148	2900 2148	2900 2148		
ays) Final BW (kg) ADG (g/day ⁻¹) F/G hnitial BW (kg) Final BW (kg) ADG (g/day ⁻¹) ADF (g/day ⁻¹) F/G ADF (g/day ⁻¹) F/G final BW (kg)	0.032	0.032	0.032	0.032	0.032	0.032	0.032	0.032	0.000	0.998
ADG (g/day ⁻¹) ADFI (g/day ⁻¹) F/G Initial BW (kg) ADG (g/day ⁻¹) ADFI (g/day ⁻¹) F/G Initial BW (kg) Final BW (kg)	0.366	0.370	0.370	0.367	0.367	0.373	0.375	0.375	0.001	0.226
ADFI (g/day ⁻¹) F/G Initial BW (kg) Final BW (kg) ADFI (g/day ⁻¹) F/G Initial BW (kg) Final BW (kg) ADG (r/dav ⁻¹)	15.9	16.1	16.1	16.0	16.0	16.3	16.4	16.4	0.054	0.227
F/G Initial BW (kg) Final BW (kg) ADG (g/day ⁻¹) F/G F/G Initial BW (kg) Final BW (kg) ADG (d/dav ⁻¹)	26.6	27.1	26.9	26.6	26.6	27.0	27.1	27.3	0.080	0.179
Initial BW (kg) Final BW (kg) ADG (g/day ⁻¹) ADFI (g/day ⁻¹) F/G Initial BW (kg) Final BW (kg) ADG (r/dav ⁻¹)	1.67	1.68	1.67	1.67	1.67	1.66	1.66	1.67	0.002	0.557
Initial BW (kg) Final BW (kg) ADG (g/day ⁻¹) ADFI (g/day ⁻¹) F/G Initial BW (kg) Final BW (kg) ADG (r/dav ⁻¹)	AME NE	AME NE	AME NE	AME NE	AME NE	AME NE	AME NE	AME NE		
Initial BW (kg) Final BW (kg) ADG (g/day ⁻¹) F/G F/G Initial BW (kg) Final BW (kg) ADG (r/dav ⁻¹)	2920 2210	2955 2210	3000 2249	3000 2282	3014 2290	3046 2290		3080 2346		
Final BW (kg) ADG (g/day ⁻¹) ADFI (g/day ⁻¹) F/G Initial BW (kg) Final BW (kg) ADG (r/dav ⁻¹)	0.366	0.370	0.370	0.367	0.367	0.373	0.375	0.375	0.001	0.226
ADG (g/day ⁻¹⁾ ADFI (g/day ⁻¹) F/G Initial BW (kg) Final BW (kg) ADG (r/dav ⁻¹⁾	1.213	1.214	1.213	1.198	1.204	1.215	1.238	1.239	0.005	0.497
ADFI (g/day ⁻¹) F/G Initial BW (kg) Final BW (kg) AD/G (c/dav ⁻¹)	40.3	40.1	40.0	39.5	39.8	40.0	41.0	41.0	0.223	0.696
F/G Initial BW (kg) Final BW (kg) ADG (c/dav ¹⁾	86.2 ^{ab}	88.2ª	86.6 ^{ab}	82.9 ^{bc}	82.2 ^c	85.2 ^{abc}	86.4 ^{ab}	84.4 ^{abc}	0.459	0.014
Initial BW (kg) Final BW (kg) ADG (c/dav ⁻¹)	2.14 ^{bc}	2.20 ^a	2.17 ^b	2.10 ^f	2.07 ^e	2.13 ^{cd}	2.11 ^{de}	2.06 ^f	0.006	0.001
Initial BW (kg) Final BW (kg) ADG (A/Av ⁻¹⁾	AME NE	AME NE	AME NE	AME NE	AME NE	AME NE	AME NE	AME NE		
days)	3022 2300	3059 2300	3100 2338	3100 2368	3120 2379	3148 2380	3180 2414			
days)	1.213	1.214	1.213	1.198	1.204	1.215	1.238	1.239	0.005	0.497
	1.835	1.826	1.817	1.813	1.823	1.805	1.877	1.889	0.008	0.124
1 10 () U 44)	41.4^{abc}	40.8 ^{bc}	39.6 ^c	41.9 ^{abc}	41.8 ^{abc}	40.4 ^{bc}	42.6 ^{ab}	43.3a	0.263	0.023
ADFI (g/day ⁻¹)	115.9	112.1	109.1	114.1	112.8	108.6	113.5	115.8	0.689	0.079
E/G	2.80 ^a	2.75 ^b	2.76 ^b	2.72 ^{bc}	2.70 ^{cd}	2.69 ^{cd}	2.66 ^d	2.67d	0.007	0.001
AI		AME NE	AME NE	AME NE	AME NE	AME NE	AME NE	AME NE		
29	2975 2254	3006 2253	3044 2286	3046 2316	3061 2325	3086 2324	3116 2354	3117 2374		
Circuit Initial BW (kg)	0.032	0.032	0.032	0.032	0.032	0.032	0.032	0.032	0.000	0.998
UVERALIT Final BW (kg)	1.835	1.826	1.817	1.813	1.823	1.805	1.877	1.889	0.008	0.124
ADG (g/day ⁻¹⁾	31.6	31.4	31.3	31.2	31.4	31.1	32.3	32.5	0.142	0.134
ADFI (g/day ⁻¹)	72.1	72.0	70.9	70.1	69.7	69.4	71.6	71.6	0.326	0.287
E/G	2.28 ^{ab}	2.29ª	2.27 ^b	2.25℃	2.22 ^{de}	2.23 ^{dc}	2.22 ^{de}	2.20 ^e	0.004	0.001

BW, body weight; ADG, average daily gain; ADFI, average daily teed intake; F/G, teed intake/gain; AME, apparent metabolizable energy; NE, net energy. statistical differences between row denote ^{a-f} Letters within a r

4

0.8272, respectively, in the grower, finisher and overall stages (Table 4). There were non-significant linear correlations between the ADFI and AME values, and ADG (p>0.05). Therefore, compared with ADFI and ADG, FCR is a sensitive measure for evaluation of the effects of energy value on production performance, because chickens fed a balanced diet responded to the energy level of the diet. Thus, when the energy level is accurately known, the relationship between FCR, as a major indicator of performance, and dietary energy level improves.

Indeed, in the current study, energy levels and FCR were highly correlated. The regression analyses of FCRs and diets prepared in accordance with the ME and NE databases for chickens are shown in Table 4. There was a significant linear correlation between FCR and the ME value of the feed prepared in accordance with our own ME database specifically for the Chinese Yellow Chicken (p<0.01). The linear regression equation between the ME value and FCR was AME=-1435.5×F/G+6278.2, where R^2 =0.8272. The correlation became much stronger when the feed was formulated using our NE database (p < 0.01). The linear regression equation between the NE value and FCR was NE=-1350.1×F/G+5340.9. where $R^2=0.9551$. This clearly indicates that the diets prepared using the NE database were more accurate for evaluating production performance in chickens than those based on an ME database. However, there were differences in the correlations between FCRs and diets prepared in accordance with NE and ME systems at different stages. At the grower stage, the linear regression equation between ME and FCR was AME=-733.9×F/ G+4569.4, where R^2 =0.3743. The

Table 4 – The	relationship	between	arowth	performance	and diet energ	V.
	relationship	Detricent	91011011	periornance	and arecencing	y .

Energy syste	m	Item	Regression Equations	R ² a
	C	ADG (g/day ⁻¹⁾	AME=55.953×ADG+762.98	0.2716
	Grower (22-42 days)	ADFI (g/day ⁻¹)	AME=-8.3973×ADFI+3727.9	0.0881
	(22-42 uays)	F/G	AME=-733.9×F/G+4569.4	0.3743
		ADG (g/day ⁻¹⁾	AME=22.614×ADG+2175.7	0.2363
AME	Finisher (42-58 days)	ADFI (g/day ⁻¹)	AME=-2.1659×ADFI+3357.8	0.0115
	(+2 50 ddys)	F/G	AME=-1127.2×F/G+6178.1	0.9287
Overall (22-58 days)	ADG (g/day ⁻¹⁾	AME=49.782×ADG+1483.2	0.2761	
	ADFI (g/day ⁻¹)	AME=-13.082×ADFI+3984.2	0.0781	
	F/G	AME=-1435.5×F/G+6278.2	0.8272	
Grower (22-42 days)	ADG (g/day ⁻¹⁾	NE=42.624×ADG+561.46	0.2116	
	ADFI (g/day ⁻¹)	NE=-12.914×ADFI+3727.9	0.0881	
	F/G	NE=-851.07×F/G+4080.8	0.6758	
		ADG (g/day ⁻¹⁾	NE=26.974×ADG+1245.2	0.4405
NE	Finisher (42-58 days)	ADFI (g/day-1)	NE=2.2725×ADFI+2107.8	0.0166
	(42-30 udys)	F/G	NE=-954.72×F/G+4959.5	0.8729
		ADG (g/day ⁻¹⁾	NE=47.991×ADG+794.17	0.3349
	Overall (22-58 days)	ADFI (g/day-1)	NE=-11.578×F/G+3131.9	0.0799
	(22-30 udys)	F/G	NE=-1350.1×F/G+5340.9	0.9551

^a Coefficient of determination (R²) was obtained using data from all treatments.

linear regression equation between NE value and FCR was NE=-851.07×F/G+4080.8, where R²=0.6758. At different stages of production, there were differences between the two databases. At the grower stage, the improved accuracy of the NE over the ME database was very apparent. However, at the finisher stage, the linear regression equation between ME value and FCR was $AME = -1127.2 \times F/G + 6178.1$, where $R^2 = 0.9287$. The linear regression equation between NE and FCR was NE= $-954.72 \times F/G + 4959.5$, where $R^2 = 0.8729$. Compared with ME, NE showed a significant difference in the production performances of chickens at the finisher stage. The reasons for the non-significant differences might be related to the sources of ME data for the feed ingredients used at the fattening stage (128 d) in this study; the NE equation generated by Wu et al. (2019) was obtained using broiler chickens, at the grower phase (25 d). Although Chinese Yellow Chickens are long-lived birds with a slaughter age reaching over 100 d. The final stage of growth is slow and the diet is very different to that of the modern broiler. Wu et al might need to look at NE values at different stages of growth to make corrections to their equations.

CONCLUSION

The NE system developed by Wu *et al.* (2019) was evaluated in the Chinese Yellow Chicken to examine wether it could predicted bird performance better than the current AME system. The NE is more accurate in predicting FCR than the AME system, especially during the grower phase of the Chinese Yellow Chicken. However, the differences in the NE system and ME systems blurred during the fattening stage of chickens, suggesting that further optimization of the NE system is required to tailor the energy needs of the Chinese Yellow Chicken for the later stages of its production.

CONFLICT OF INTERESTS

The authors declare that there is no conflict of interest regarding the publication of this paper.

ACKNOWLEDGEMENTS

This work was supported by the project of Innovation Team in Modern Agricultural Industry Technology System from Guangdong Province (2018LM1059).

REFERENCES

- Carré B, Lessire M, Juin H. Prediction of the net energy value of broiler diets. Animal 2014;8:1395-1401.
- De Groote G. A comparison of a new net energy system with the metabolisable energy system in broiler diet formulation, performance and profitability. British Poultry Science 1974;15:75-95.
- Gous R. An effective alternative to the metabolisable energy system. Proceedings of the 21st Annual Australian Poultry Science Sumposium, 2010 Feb 1-3rd; Sydney, New South Wales; 2010. p.36-43.
- Leeson S, Caston L, Summers J. Broiler response to diet energy. Poultry Science 1996;75:529-535.
- Noblet J. Energy evaluation of pig feeds with emphasis on net energy. Proceedings of the 12th BOKU Symposium Tierern"ahrung; 1994; Vienna. p.13–18.

- Noblet J, Dubois S, Lasnier J, Warpechowski M, Dimon P, Carré B, *et al.* Fasting heat production and metabolic BW in group-housed broilers. Animal 2015;9:1138-1144.
- NRC National Research Council. Nutrient requirements of swine. 11th ed. Washington: National Academic Press; 2012.
- Ren L, Tan H, Zhao F, Zhao J, Zhang J, Zhang H. Using corn starch as basal diet to determine the true metabolizable energy of protein feedstuffs in chinese yellow chickens. Poultry Science 2012;91:1394-1399.
- Sakomura NK, Modeling energy utilization in broiler breeders, laying hens and broilers. Brazilian Journal of Poultry Science 2004;6:1-11.
- Sibbald IR, Morse PM. Effects of the nitrogen correction and of feed intake on true metabolizable energy values. Poultry Science 1983;62:138-142.

- Swick RA, Wu S, Rodgers N, Choct M. Poultry C: energy systems for broilers–recent developments and relevance for feed formulation. Proceedings of the 5th International Broiler Nutritionists' Conference; 2014. New Zealand: Poultry Industry Association of New Zealand; 2014
- Van der Klis J, Jansman A. Net energy in poultry: its merits and limits. The Journal of Applied Poultry Research 2019;28:499-505.
- Waldroup P. Energy levels for broilers. Journal of the American Oil Chemists' Society 1981;58:309-313.
- Wu S-B, Swick RA, Noblet J, Rodgers N, Cadogan D, Choct M. Net energy prediction and energy efficiency of feed for broiler chickens. Poultry Science 2019;98:1222-1234.