Mitral valve replacement with crossed papillopexy and annular constriction in heart failure patients

Abstract

Objective: To analyze the short-term and mid-term follow-ups of patients with heart failure and moderate to severe mitral valve insufficiency and who have undergone mitral valve replacement with crossed papillopexy and annular constriction.

Methods: Thirteen patients in NYHA functional class III or IV, with a mean age of 54.1 years and with idiopathic etiology, underwent mitral valve replacement with ring constriction and crossed papillopexy. Echocardiograph parameters, functional class and survival actuarial curve were analyzed.

Results: There were no deaths during surgery or in the postoperative period. The mean left ventricular diastolic diameter was reduced from 71 ± 8.6 mm to 65.3 ± 8.6 mm (p=0.049) and the mean left ventricular systolic diameter was reduced from 50.4 ± 11.1 mm to 44 ± 5.9 mm (p=0.017); the percentage of the left ventricular shortening was 17 ± 4 % to 24 ± 8.3% (p=0.014); the ejection fraction varied statistically and significantly from 34 ± 9% to 45 ± 14% (p=0.008). Eleven (84.6%) patients were in FC I and II. At 1, 6 and 12 months after follow-up surgery, the survival rate was 100%, 82.6%, 71.6%, respectively. This rate was maintained at 7.6% for more than 36 months.

Conclusion: The results obtained from patients with heart failure and moderate to severe mitral valve insufficiency and who underwent mitral valve replacement with crossed papillopexy and annular constriction presented evidence of improved heart remodeling and significant improvement in left ventricular performance.

INTRODUCTION

Heart failure (HF) has been one of the greatest clinical challenges in the field of public health today, and is considered to be an epidemic in progress: it is diagnosed in 1% to 2% of the population in developed countries [1].

Statistics in the U.S. shows that heart failure affects about five million people, and it is estimated that about 400,000 new cases are diagnosed annually, representing 15 million hospitalizations at a cost of 10,000 dollars per hospitalization and 200,000 deaths per year [2].

In 1994, Bocchi [3] demonstrated the high mortality of patients with advanced heart failure when only drug therapy is used. This author reported in a three-year follow-up that mortality was 20%, 40%, 55% and 60% at six months, one year, two years and three years, respectively.

The natural history of heart failure has been responsible for severe prognosis and low quality of life in these severely ill patients [3]. The search for alternative methods or complements to drug therapy (which can alter the course of the disease) is a major challenge for researchers [4].

Heart transplantation has been the main surgical treatment offered to patients with advanced heart failure accompanied by severe functional and hemodynamic repercussion, resulting in a significant change in the prognosis of this disease [4,5].

Several factors prevent heart transplantation from being extended to a larger contingent of patients, such as the limited number of donors, the adverse effects of immunosuppression, the clinical and psychosocial conditions of the recipient, and other factors that can result in a patient being denied a transplant [5].

Thus, the search for other methods of surgical treatment remains constant on the part of researchers who are dedicated to treating this serious disease [6-13]. A new possibility then arose: surgically approaching the mitral valve in patients with severe left ventricular dysfunction in order to improve ventricular performance. This possibility may be included in the surgical and therapeutic tools to combat advanced heart failure [14-23].

The presence of mitral valve insufficiency in heart failure represents a predictor factor of mortality and a worsening in the patient’s quality of life [24,25].

Some authors [14-23] have shown that the correction of mitral valve insufficiency in patients with severe left ventricular dysfunction - whether due to valvuloplasty or to valve replacement with preservation of subvalvar apparatus - was associated with low operative mortality and improves survival in the short- and mid-term.

In this study, we consider the data in the literature showing that the techniques of preserving the subvalvar apparatus in mitral valve replacement during heart failure may lead to an increase of ventricular function, improvement in functional class and short- and mid-term survival. We also consider studies that prove that the crossing of the papillary muscles and prosthesis implantation in mitral valve replacement, as proposed by Gomes [17], Gomes et al. [19], and Santana Filho [23]. The aim of this study is to analyze the short- and mid-term results for patients with mitral valve insufficiency who underwent mitral valve replacement with the technique of crossed papillopexy and annular constriction.

METHODS

With the approval by the Ethics Committee of the Federal University of Mato Grosso do Sul, 13 patients with heart failure in III or IV functional class (FC), according to the Criteria Committee of the New York Heart Association underwent mitral valve replacement with annular...
constriction and preservation of the subvalvar apparatus with the crossed papillopexy technique.

Patients were between 34 and 73 years of age, averaging 54.1 ± 10.8 years; four (31%) females and nine (69%) males. All patients were undergoing drug therapy (with the maximum acceptable dose of drugs). Etiologically, all patients presented idiopathic dilated cardiomyopathy with moderate or severe mitral insufficiency, ventricular dysfunction (Ejection Fraction <60% - Teicholz method) and III and IV Functional Class, as shown in Table 1. The exclusion criteria were associated ischemic heart disease, double valve replacement, or tricuspid valvuloplasty and emergency surgery.

Doppler echocardiography evaluation was performed in the preoperative period, in the first, third, sixth, and twelfth months, and after at every six months of postoperative. We analyzed the following parameters: Ejection Fraction, diastolic diameter of the left atrium, left ventricular end-diastolic and end-systolic diameter, left ventricular end-diastolic and end-systolic volume, percentage of left ventricular systolic shortening, left ventricular mass and volume-mass relationship in the left ventricle.

After anesthesia, the patients underwent surgery using longitudinal median sternotomy, conventional cardiopulmonary bypass, moderate hypothermia (27ºC) and St. Thomas antegrade crystalloid cardioplegia at 4ºC. Next, left atriotomy (parallel to the interatrial septum) and inspection of the valve and subvalvar apparatus (Figure 1A) were performed. After, a circular incision at the base of the anterior cusp (aiming to withdraw it from the mitral annulus and maintaining a 2mm cusp), and a subsequent central longitudinal incision of the anterior cusp were performed (Figure 1B). Then, repair sutures (braided polyester coated with polybutylate 00 padded Teflon) were used in each half of the anterior cusp (Figure 1C). Using this suture repair, the crossing of the papillary muscles through the attachment of opposite commissures - papillopexy cross (Figure 1D) - was performed.

Next, the measurement of the mitral annulus was performed, and surgeons agreed to choose an undersized prosthesis - one number below the measurement obtained - in order to complete annular constriction. Surgeons used enough braided polyester sutures coated with 00 polybutylate on the mitral annulus to implant the valvular prosthesis, attaching the cusp after the ring itself in order to preserve the subvalvar apparatus. A left atrial suture was performed (using a one-layer continuous running suture) with polypropylene 00 (Figure 2).

In the postoperative period, the time of observation and follow-up ranged from one to 30 months, based on the functional class of heart failure (NYHA), the actuarial survival curve, and Doppler echocardiography (performed in the first, third and sixth months and every six months during the postoperative period). The statistical method used was the Wilcoxon, with a level of significance of 0.05.

Table 1. General characteristics of the patients

<table>
<thead>
<tr>
<th>Nº</th>
<th>Name</th>
<th>Gender</th>
<th>Age</th>
<th>Diagnosis</th>
<th>Etiology</th>
<th>Funcional Class</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>P.P.</td>
<td>M</td>
<td>48</td>
<td>MI</td>
<td>Idiopathic</td>
<td>IV</td>
</tr>
<tr>
<td>2</td>
<td>S.B.L.</td>
<td>M</td>
<td>34</td>
<td>MI + slight AI</td>
<td>Idiopathic</td>
<td>IV</td>
</tr>
<tr>
<td>3</td>
<td>G.P</td>
<td>M</td>
<td>43</td>
<td>MI</td>
<td>Idiopathic</td>
<td>IV</td>
</tr>
<tr>
<td>4</td>
<td>A.C</td>
<td>M</td>
<td>59</td>
<td>MI + slight AI</td>
<td>Idiopathic</td>
<td>III</td>
</tr>
<tr>
<td>5</td>
<td>M.L.G.</td>
<td>F</td>
<td>73</td>
<td>MI</td>
<td>Idiopathic</td>
<td>IV</td>
</tr>
<tr>
<td>6</td>
<td>J.P.S.</td>
<td>M</td>
<td>54</td>
<td>MI</td>
<td>Idiopathic</td>
<td>III</td>
</tr>
<tr>
<td>7</td>
<td>I.L.</td>
<td>M</td>
<td>52</td>
<td>MI + TI MOD + AI MOD</td>
<td>Idiopathic</td>
<td>IV</td>
</tr>
<tr>
<td>8</td>
<td>J.P.S.</td>
<td>M</td>
<td>57</td>
<td>MI</td>
<td>Idiopathic</td>
<td>IV</td>
</tr>
<tr>
<td>9</td>
<td>E.C.B.</td>
<td>F</td>
<td>66</td>
<td>MI</td>
<td>Idiopathic</td>
<td>IV</td>
</tr>
<tr>
<td>10</td>
<td>F.S.</td>
<td>M</td>
<td>57</td>
<td>MI</td>
<td>Idiopathic</td>
<td>IV</td>
</tr>
<tr>
<td>11</td>
<td>J.A.</td>
<td>F</td>
<td>68</td>
<td>MI</td>
<td>Idiopathic</td>
<td>IV</td>
</tr>
<tr>
<td>12</td>
<td>E.C.B.</td>
<td>F</td>
<td>45</td>
<td>MI</td>
<td>Idiopathic</td>
<td>III</td>
</tr>
<tr>
<td>13</td>
<td>A.A.O.</td>
<td>M</td>
<td>48</td>
<td>MI</td>
<td>Idiopathic</td>
<td>IV</td>
</tr>
</tbody>
</table>

F = female; M = male; MI = mitral insufficiency; AI – aortic insufficiency; TI = tricuspid insufficiency; MOD = moderate

Fig 1 – Crossed papillopexy – A. Native valve. B. Withdrawing of the anterior cusp. C. Sutures on the half of anterior cusp. D. Crossed papillopexy
RESULTS

There were no deaths during surgery or in the immediate postoperative period. In the long-term follow-up, 11 (84.6%) patients were discharged from hospital with significant evidence of clinical and echocardiographic improvement compared to the preoperative condition. Two (15.4%) patients died in the second month of postoperative due to bronchopneumonia, followed by septic shock and multiple organ failure.

Four (30.8%) bovine pericardium bioprostheses (Braile Biomédica) were implanted, and in nine (69.2%) patients, mechanical prostheses (St. Jude Medical) were used. Smaller-sized prostheses were chosen in an attempt to remodel the base of the left ventricle. The cardiopulmonary bypass time ranged from 49.3 ± 6.51 minutes. There was no need to use intra-aortic balloon.

Doppler echocardiographic parameters, according to Table 2 and Figure 3, show improvement in ventricle geometry and atrial and left ventricular function, as compared to the preoperative period.

All patients presented significant clinical improvement. According to the NYHA classification, in the postoperative period, ten (76.9%) patients were in IV Functional Class and three (23.1%) in III Functional Class. In the postoperative evaluation, five (45.5%) patients were in II Functional Class and six (54.5%), in I Functional Class.

Survival was evaluated by actuarial curve, considering patients alive at 1, 6, 12, 24 and 30 months of follow-up after surgery, respectively represented by 100%, 82.6%, 71.6%, 71.6% and 71.6%, as shown in Figure 4.

| Table 2. Mean of Doppler echocardiographic parameters during pre- and postoperative. |
|-----------------------------------|-----------------------------------|-----------------------------------|
| LVDD (mm) | LVSD (mm) | LAD (mm) |
| 71.6±8.6 | 59.1±8.5 | 49.4±6.4 |
| LVSD (mm) | 50.4±11.1 | 44±5.9 |
| LVEDV (ml) | 270.5±72.8 | 223.8±68.6 |
| LVEDV (ml) | 150.9±66.1 | 135±62.1 |
| Δ% | 17±4 | 24±8.3 |
| LV mass | 408.8±122.6 | 358±136.8 |
| EF (%) | 34±9 | 45±14 |
| p | 0.049 | 0.002 |
| | 0.017 | 0.0005 |
| | 0.014 | 0.008 |
| obs. observation; EF = Ejection Fraction; LVDD = left ventricular diastolic diameter; LVSD = left ventricular systolic diameter; LAD = left atrial diameter; LVEDV = left ventricular end diastolic volume; LVESV = left ventricular end systolic volume; Δ% = percentage of left ventricular systolic shortening; M/V = mass-volume relationship; S = septum; PW = posterior wall; SD = Standard deviation; mm = millimeter; ml – mililiter; g = gram

Fig. 4 – Actuarial survival curve of patients who underwent crossed papillopexy and mitral valve replacement with annular constriction with severe heart failure. n=number
DISCUSSION

In this study, we emphasize the correction of mitral valve insufficiency with the crossed papillopexy technique in patients with ventricular dysfunction, and preservation of the subvalvar apparatus and implantation of an undersized valve prosthesis to remodel the base of the left ventricle and the subvalvar apparatus aiming to improve ventricular performance.

In this study, using the cross papillopexy technique and mitral valve replacement with annular constriction in patients with severe heart failure with moderate-to-severe mitral valve insufficiency, there was no operative mortality, and no need for mechanical ventricular assistance in the postoperative; the survival was 82.6% at six months, 71.6% in one year and 71.6% in 30 months; there was substantial increase of the Ejection Fraction of 34% to 45%; and there was a decrease in ventricular diameters and improvement of Functional Class.

The absence of operative mortality and mechanical ventricular assistance mechanism presented in this study, compared with the other papers previously mentioned [14-23], may be explained by the fact that the crossing of the papillary muscles has allowed for left ventricular diastolic containment. Similarly, the annular constriction due to the implantation of an undersized prosthesis promotes the base ventricular remodeling, allowing improvement of cardiac performance.

It is possible that the increase the Ejection Fraction using the crossed papillopexy technique and mitral valve replacement with annular constriction in patients with heart failure with moderate-to-severe mitral valve insufficiency has been greater than in the studies previously mentioned because of the difference in the geometry of the left ventricular cavity using diastolic containment after crossing the papillary muscles. With this technique, there is a decrease in the angle of displacement of the bases of the papillary muscles, providing a geometric support by reducing pendular displacement, thus avoiding the passive ventricular dilation.

The higher survival rates shown in this study compared with other mitral valve approaches forementioned [14-23] is probably due to the immediate improvement of ventricular performance in short-term (this factor may be considered to be a predictor of increased survival). It is possible that in a long-term follow-up, this improvement of ventricular performance can be a determining factor in increased survival rates.

Regarding the improvement in Functional Class, it may be observed that the results found in the literature are similar to this study, whereas most of the techniques proposed are able to correct the mitral valve insufficiency - a predominant symptom in these patients.

In the overall analysis, respecting the limitations of this study (which was a non-randomized study, no comparative, with a small sample and with short- and mid-term follow-up), this technique presented herein proved to be feasible and reproducible, showing significant improvement in Functional Class and in echocardiographic parameters. Moreover, the technique used in this study provides satisfactory survival, showing evidence of favorable cardiac remodeling and significant functional left ventricle recovery in patients with heart failure and patients with moderate-to-severe mitral valve insufficiency.

REFERENCES

