The aorta, the elastic tissue and cystic medial necrosis

Mauro Paes Leme de SÁ*

Despite the advances made in diagnostic methods and techniques of surgical correction in recent decades, aortic diseases remain a major cause of mortality and cardiovascular morbidity and an ongoing challenge for cardiologists and cardiovascular surgeons.

To study comprehensively the serious diseases involving the aorta and other elastic arteries, there is need to seek understanding with the scientists who tirelessly studied the phylogenetic evolution of biomolecular and elastic tissue.

It is believed that about 500/600 million years ago during the great burst of the Cambrian period, variant forms of life appeared. Among them were the oxygen-producing cyanobacteria. The progressive enrichment of oxygen in the atmosphere continued during this era. Since most specimens were adapted to a preexisting atmosphere without oxygen, many have disappeared during this phase. New mutations, however, allowed the specimens survivors to adapt to aerobic forms of life, which diversified later.

Vertebrates have been successful in the colonization of all possible ecological niches. Their extraordinary ability to adapt is directly related to the development of a system that allowed access to maximize their cells with oxygen, which is efficiently used for their mitochondria to generate energy. The emergence of an elastic tissue was essencial in developing lungs and cardiovascular system more complex to capture and carry oxygen to the most remote cells of beings of increasing complexity.

According to Leslie Robert [1], from the Laboratory of Cell Biology, University of Paris, “... we consider an extraordinary coincidence that the elastin gene arose during this period. As far as we know, the further development of the elastin gene occurred rapidly, from fish to terrestrial quadrupeds. Elastin, in evolutionary terms, is much newer than most of the collagens.” The only similarity between these two types of protein is that both have high proportions of glycine, which ended up confusing the first researchers.

The phylogenetic development of elastin has been crucial for vertebrate develop respiratory and circulatory systems highly efficient. However, these highly specialized systems are malfunctioning related to the aging process by gene determination, causing severe disease in humans. The author concludes his essay by stating that “… this shows once again that the fact of creation of new genes is related to a mechanism to empower each individual species for reproductive success and not to prolong life.”

The middle layer of the aorta in humans is comprised of four basic elements: elastic fibers, collagen fibers, smooth muscle cells and amorphous substance, arranged in periluminal disposition in lamellar units. Each unit consists of two lamellar elastic fibers parallel with smooth muscle cells, collagen fibers and amorphous substance between them. Transverse thin elastic fibers connect the larger fibers. This basic pattern is present throughout the length of the vessel, although there are quantitative and qualitative differences between the thoracic and abdominal segments. The thoracic aorta contained 35 to 56 lamellar units, while the abdominal aorta contains around 25 to 28 of these units [2]. The middle layer of elastic arteries has an important role in maintaining the architecture of the vascular wall in response to deformation caused by the pulse wave determined by cardiac systole.

Humans lost the ability to produce elastic fiber early in life, and short synthesis of elastin can be detected in the aortic wall after infancy. Moreover, the number of lamellar units is constant in the aorta of mammals, except humans [3].

Degenerative diseases of the middle layer are the most common causes of aneurysms involving the proximal thoracic aortic. Although most cases are idiopathic, some genetic disorders such as Marfan syndrome, are associated with premature degeneration of the aortic media, and is histologically represented by cystic necrosis (accumulation of mucopolysaccharides), elastic fragmentation and apoptosis of smooth muscle cells. It is believed that cases
of idiopathic dilated of the aortic root may represent fruste
form of this syndrome [4,5].

The adventitial layer, which has no external limiting layer,
is relatively underdeveloped compared to the average, and
contains elastic fibers and collagen. Pereira [6] and White
[7] believe the loss of structural integrity of the adventitial
layer, not the middle layer would be required for the
development of aneurysms. For them, the structural
integrity of this layer is critical for the maintenance of
the entire aortic wall submitted to intraluminal hemodynamic
stress.

The pulse wave determined by cardiac systole, causes
in the aorta a localized distension circular and significant
longitudinal distension of each elastic strand and of each
lamellar unit. It is believed that the internal elastic membrane
and the internal lamellar units of the middle layer are
proportionally more affected than the outer portions. Cliff
[8] suggested that an expansion occurs up to 20% of the
diameter of the inner portions and 1% to 4% of the outer
portions, although a change of only 10% of radial motion
has been proposed [9]. Dobrin [10] reported that the
descending thoracic aorta increases longitudinally 1%, while
the ascending aorta and pulmonary artery increased from 5
to 11% [11].

In 1986 was identified the fibrillin-1, whose involvement
in the pathogenesis of Marfan syndrome has been widely
accepted. Sakai [12] demonstrated that it is a distinctive
structure of collagen, which may be associated or not with
elastin in its amorphous form. From then on it became clear
that fibrillin-1, and no collagen VI was immunolocalized
microfibrillar system component periodically along the
microfibrils and that these microfibrils may be aligned in
bundles. Fibrillin is described as a collagenase-resistant
glycoprotein, monosulphate, with molecular weight
estimated at approximately 350 kD and is capable of forming
intermolecular disulfide bonds, forming an insoluble
aggregate.

In culture media, fibroblasts secrete their precursor,
profibrillin in about 4 hours, and processed and deposited
into the extracellular matrix with lower weight (320 kD),
resulting from a possible proteolytic cleavage. The
conversion of the precursor to the final product varies
among controls, however, on average, is complete around
the twentieth time. The deposition of aggregated protein,
alone or together with other proteins, will form a microfibrillar
network, associated or not with elastin, thus becoming
incorporated into the microfibrils structures [13].

Fibrillin-1 has been proposed as the main component
of the system due to its microfibrillar immunolocalization in all
tissues where the microfibrils can be structurally identified
[12,14]. These microfibrils contain fibrillin molecules that
can be identified periodically along its length. It was the
fact that fibrillin-1 is a glycoprotein rich in cysteine, which
rapidly forms disulfide bonds, which reaffirmed the
possibility of it being the main structural component of
microfibrils [14,15]. This protein has been recognized as
distinct microfibrillar protein elastin, and is believed to have
the task of forming a scaffold for subsequent deposition of
elastin [16].

Ascending aortic aneurysms are most commonly related
to degenerative changes of the middle layer secondary to
inherited metabolic disorders. Atherosclerosis is less
common in the ascending aorta, the opposite occurring in
the descending thoracic aorta. When atherosclerosis is
present in the ascending aorta is often associated with
those degenerative changes of the middle layer. However,
artherosclerosis as a cause of aortic aneurysms has been
intensely debated in the literature [17]. From the biochemical
point of view there is a strong affinity for calcium and lipids
to the elastic fibers characterizing the aging process [1].

De Sá et al. [18] demonstrated that patients with bicuspid
aortic valve (BAV) have more severe degenerative changes
in the medial layer of ascending aorta and pulmonary artery
than those observed in patients with tricuspid aortic valve,
with no relation to age. Later, there was also less fibrillin-1
in the ascending aorta and pulmonary arteries of patients
with this congenital malformation. However, the total
amount of elastin was similar in both groups [19].

Therefore, it is possible that in certain genetic disorders
occurs only reduced fibrillin-1 in the extracellular matrix,
since the quantities of elastin and, possibly, elastic tissue,
were similar in both groups [19]. Other authors have pointed
out that the medial necrosis, elastic fragmentation and
alterations in smooth muscle cells in young subjects, ie
aged less than 40 years, has a hereditary relationship and
result in biochemical defects that are responsible for the
loss of cohesive strength of the aortic media [20].

The presence of cystic medial necrosis or accumulation
of mucopolysaccharides, although nonspecific, may be a
marker of the presence of complex degenerative processes
and has assisted in clinical practice to identify patients at
higher risk of cardiovascular complications, such as, for
example, conduct and monitoring of surgical patients with
BAV [21,22]. In an article published in this issue, colleagues
will have the opportunity to review the various clinical and
pathologic features that involve the cystic necrosis of the
aortic media [23].

*PhD, Federal University of Rio de Janeiro and
University of Toronto. Clinical e Reasearch Fellowship,
University of Toronto, Canada. (Head of the Service of
Cardiac Surgery at University Hospital of UFRJ. Adjunct
Professor of the Department of Surgery at FM.UFRJ.)
REFERENCES


