MULTIPLE GEOTECHNOLOGICAL TOOLS APPLIED TO DIGITAL MAPPING OF TROPICAL SOILS

Marcelo Rodrigo Alves(1), José A. M. Demattê(2)* and Pedro Paulo Silva Barros(3)

(1) Universidade do Oeste Paulista, Presidente Prudente, São Paulo, Brasil.
(2) Universidade de São Paulo, Escola Superior de Agricultura Luiz de Queiroz, Departamento de Ciência do Solo, Piracicaba, São Paulo, Brasil.
(3) Universidade de São Paulo, Escola Superior de Agricultura Luiz de Queiroz, Departamento de Engenharia de Biossistemas, Piracicaba, São Paulo, Brasil.
* Corresponding author.
E-mail: jamdemat@usp.br

ABSTRACT

In recent years, geotechnologies as remote and proximal sensing and attributes derived from digital terrain elevation models indicated to be very useful for the description of soil variability. However, these information sources are rarely used together. Therefore, a methodology for assessing and specialize soil classes using the information obtained from remote/proximal sensing, GIS and technical knowledge has been applied and evaluated. Two areas of study, in the State of São Paulo, Brazil, totaling approximately 28.000 ha were used for this work. First, in an area (area 1), conventional pedological mapping was done and from the soil classes found patterns were obtained with the following information: a) spectral information (forms of features and absorption intensity of spectral curves with 350 wavelengths -2,500 nm) of soil samples collected at specific points in the area (according to each soil type); b) obtaining equations for determining chemical and physical properties of the soil from the relationship between the results obtained in the laboratory by the conventional method, the levels of chemical and physical attributes with the spectral data; c) supervised classification of Landsat TM 5 images, in order to detect changes in the size of the soil particles (soil texture); d) relationship between classes relief soils and attributes. Subsequently, the obtained patterns were applied in area 2 obtain pedological classification of soils, but in GIS (ArcGIS). Finally, we developed a conventional pedological mapping in area 2 to which was compared with a digital map, ie the one obtained only with pre certain standards. The proposed methodology had a 79 % accuracy in the first categorical level of Soil Classification System, 60 % accuracy in the second category level and became less useful in the categorical level 3 (37 % accuracy).

Keywords: soil spectral behavior, terrain features, remote sensing.
INTRODUCTION

People are becoming aware that soil resources are not renewable in the time-scale of human generations and, consequently, are limited. Thus, the need for information leading to greater knowledge of soil use becomes more imperative. This knowledge is essential for maintaining populations, not only in terms of food production and raw materials, but also as a subsidy for urban development and environmental studies, among others. Most knowledge is obtained through what is known as pedological inventories or pedological surveys, which are nothing more than the examination and identification of soils, the establishment of their geographical boundaries, representation and description of soils on the map, and interpretation of their purpose.

In Brazil, the first soil surveys were carried out during the 1930s, with the objective of characterizing, identifying, and assessing potential sites for irrigation projects downstream from public dams in the Brazilian Northeast. However, the greatest boost in soil surveys occurred in the late 1940s, when the Ministry of Agriculture established the National Commission of Agronomic Research (Centro Nacional de Ensino e Pesquisas Agronômicas - CNEPA) to study soils in the vast territory of Brazil. Soil studies involved classification, fertility, management, and conservation, in addition to the basic research of physical, chemical, and mineralogical characterization of soils. There was an extensive program of soil surveys on the exploratory level of recognition, which for three decades produced most of the pedological information available today. Currently, around 35% of Brazilian soils (17 states and the federal district) are mapped on medium to undetailed scales (1:100,000 to 1:600,000) and complete coverage of the country at the exploratory level, on undetailed scales (1:1,000,000 to 1:5,000,000) (Santos, 2007).

From the mid-1980s on, soil surveys in Brazil have been practically stagnant, mainly due to lack of incentives from the government, along with poor working conditions (problems with food, fresh water, road traffic conditions, cars, and medical assistance), the slow pace of officials, costly fieldwork, and difficulties in laboratory analyses.
efficient development of detailed maps may be hindered. The aim of computer use is not to replace the conventional method of soil surveys, but to assist and optimize the work.

Many multidisciplinary studies show the efficiency of technological tools in soil studies, for example, orbital spectroradiometry. Although the soil is usually covered with vegetation and the soil surface is not visible, some soil properties can be directly assessed by their spectral signatures (Rossiter, 2005). Some of these notable soil properties are moisture (Jackson et al., 1996), physical and chemical characteristics (Odeh and McBratney, 2000), and salts (Metternicht and Zinck, 2003). Moreover, integrated use of geostatistical techniques with remote sensing data for spatialization is important (Stein et al., 1998).

Studies on spectroradiometry show a strong relationship between spectral responses and soil properties, such as cation exchange capacity, organic carbon, Fe oxides, and clay (Chang et al., 2001; Shepherd and Walsh, 2002; Franceschini et al., 2013; Nanni and Dematté, 2006; Dematté et al., 2014a). In fact, this led Dematté et al. (2004a) to use a spectroscopy information to aid in pedological mapping. Afterwards, Fiorio et al. (2014) suggest the use of spectral sensors for the aid of field work in pedological maps. In addition to laboratory or field spectroscopy, we can also gather information from space (using Landsat data) as a valuable strategy (Dematté et al., 2009).

Another example of geotechnology applied to soil studies is the use of numerical models of land and their primary and secondary derivatives (McBratney et al., 2003), which are applied in the characterization and delineation of mapping units (McKenzie et al., 2000). The relationship of topographic features to soil properties was proved by Milne (1935); however, this relationship has been used more significantly in recent years, mainly due to the technological progress that facilitated access to powerful computers, as well as tools such as the Geographic Information System (GIS) and Global Positioning System (GPS) (Rossiter, 2005).

Although these techniques have proven helpful, few studies joined geoprocessing techniques, remote sensing (ground and orbital), relief analysis, field observations, and technical knowledge in a concise, accurate, and scientific way in soil surveys. However, basic studies such as morphopedology, photopedology, remote/proximal sensing, and geoprocessing focus on one unique technique, and are not linked. Nothing more logical than integrating the information generated, resulting in a more accurate and less costly soil map, which is generated more quickly and covers larger areas.

This study is based on the hypothesis that it is possible to determine a method that allows characterization, discrimination, and spatialization of soil classes, integrating the information obtained from remote/proximal sensing and geoprocessing, since these techniques are complementary. We expect that using each several remote sensing techniques will achieve a better soil map than traditional methods. Thus, the main objective is to generate a technique for developing a highly-detailed level of soil mapping with the integration of geotechnologies.

MATERIAL AND METHODS

Study site

The study site consists of two areas (1 and 2) of sugarcane (Saccharum spp) cultivation, each composed of several non-continuous plots. These sites are located in the northeastern region of São Paulo, involving several municipalities, such as São Carlos, Araraquara, and Ibaté, among others (21º 16’ 59” S/48º 39’ 31” W and 21º 45’ 19” S/48º 6’ 2” W). The areas together cover approximately 28,000 ha, with 15,000 ha in area 1 and 13,000 ha in area 2. The region ranges from 450 - 900 m above sea level, and the climate is mesothermal (dry winters and wet summers). Annual average rainfall ranges from 1,000 - 1,800 mm, and annual average temperature is around 20 ºC. Lithology is represented mainly by the Serra Geral, Botucatu, and Pirambôia Formation (São Bento Group) and covered by the Serra de Santana Formation and others (Taubaté Group). The rocks of the Serra Geral Formation are volcanic, mainly basaltic. The rocks of the Botucatu Formation are wind sandstones, and the rocks of the Pirambôia Formation are composed of sandstones originating from fluvial deposits and flood plains (Bistrichi et al., 1981).

Methodology

The methodology proceeded in three stages: (a) determination of soil patterns in part of the studied area; (b) application of patterns obtained from stage “a” in a second unknown area; and (c) validation of soil mapping. We used wholly geotechnological patterns to create a digital map of the soil. We validated the digital map by cross-tabulating the digital and conventional soil maps with a conventional soil map of the unknown area.

Stage 1 - Determination of soil patterns

This stage was performed in area 1. The patterns of soil profiles were extracted from a semi-detailed soil map. The map was created by the conventional method, with 300 sampling points distributed according to the transection method. The samples were collected at three different depths (0.00 - 0.20, 0.40 - 0.60 and 0.80 - 1.00 m) for a total of 900 soil
samples. In addition, 40 complete soil profiles were described and laboratory analyses were made to determine the following soil properties: sand, silt, clay, Ca\(^{2+}\), Mg\(^{2+}\), Al\(^{3+}\), and H + Al (Embrapa, 2013) in the soil exchange complex, and total contents of Fe, Ti, Si, and Al (Camargo, 1986). The sampling points were georeferenced with GPS. Figure 1 shows the activities in stage 1.

Spectral data acquisition at the laboratory level

The spectral data for the 900 soil samples collected from area 1 were obtained by the portable FieldSpec Pro sensor (ASD Inc., Boulder, Colorado, USA), within the 350 - 2,500 nm wavelength range, following the method described by Bellinaso et al. (2010). The spectral data was processed after measurement to smooth the spectral curves through application of the Savitzky-Golay method, with the 2nd polynomial order and a 9-point window (Savitzky and Golay, 1964). Subsequently, the spectral data were processed following the method of Nanni and Dematté (2006), with 22 bands (B1, B2...B22) and 13 heights (H1, H2...H13).

Spectral information and soil properties determined by conventional analysis were joined in a data matrix. A mathematical procedure was applied to deduce multiple regression equations, which allowed estimation of soil properties from the soil spectral data. The equations were used in area 2 (unknown area). The multiple regression equations were calculated to quantify 19 physical and chemical soil properties.

Multiple linear regression analysis was performed with SPSS 11.0 software using the stepwise method (Glantz and Slinker, 1990). The equations were evaluated according to \(R^2 \), RMSE, and \(e_m \) indexes (Kobayashi and Salam, 2000; Brown et al., 2006; Wolschick et al., 2007).

Evaluation of pure spectral curves

The spectral curves obtained for each sampling point at different depths were correlated with a spectral library (Bellinaso et al., 2010) in order to sort and collate the spectra by soil class. Subsequently, each class obtained was analyzed in terms of form, intensity, and absorption of their respective groups of spectral curves (Dematté et al., 2002, 2014b), to be used as a pattern for the group of curves obtained in area 2.

Satellite images and supervised classification

Five satellite images were taken from Landsat 5 (Thematic Mapper sensor), WRS 220/075, dated 08/17/2002, 08/14/2004, 08/17/2005, 05/09/2006, 08/09/2007, with six spectral bands (B1: 450 - 520; B2: 520 - 600; B3: 630 - 690; B4: 760 - 900; B5: 1,550 - 1,750; and B6: 2,080 - 2,350 nm), a spatial

![Figure 1. Flowchart of activities in stage 1.](image-url)
resolution of 30 m, and average altitude of orbit of 705 km. The reason the images were obtained in different years is that in large commercial plantations of sugar cane, soil preparation for crop renewal (which implies exposed soil), materializes through installments over the years, that is, each year soil tillage and preparation is carried out on a percentage of the area. This system forms a five-year cycle on average for the area under study, which means that the area prepared this year will only be prepared again in five years.

The images were registered according to Mitishita et al. (1988). For the purpose of maintaining the pixel value as similar as possible to the original value, the method called “nearest neighbor interpolation” was used, correcting only distortions in scale, and displacement or rotation between image and land projection (Crôsta, 1992). All procedures for land registration were performed in the ENVI 4.3 program (RSI, 2006). Afterwards, the digital numbers of the image were processed for apparent reflectance (AR) (Antunes et al., 2003) to be converted to images of surface reflectance (Vermote et al., 1997) in the 6S program (Second Simulation of the Satellite Signal in the Solar Spectrum).

To separate areas with vegetation from those with exposed soil, we performed the Linear Model of Spectral Mixture - LMSM (Shimabukuro and Smith, 1991) and the Normalized Difference by Vegetation Index - NDVI (Rouse et al., 1974; Deering et al., 1975).

Thus, in each of the images (surface reflectance), sampling points are overlapped and only those with exposed areas of soil were preserved and used as a reference for later supervised classification. In each of the selected points, clay content in the surface layer was observed and rated in one of the following classes: sandy (<150 g kg⁻¹), sandy medium (150 - 250 g kg⁻¹), medium loamy (250 - 350 g kg⁻¹), clay (350 - 600 g kg⁻¹), and very clay (>600 g kg⁻¹). The spectral curves from each sampling point were visually compared to the patterns identified in stage 1 and assigned to a soil group. Thus, the spectral information of the set of points belonging to each class is grouped in a library.

Next, a supervised classification procedure was applied to the images using the algorithm of Gaussian distribution by maximum likelihood (Rodrigues et al., 2007).

Derivation of terrain features

Digital contour lines with vertical equidistance of 20 m were used to derive a digital elevation model (DEM) for the site under study. From this, primary (slope and plan curvature) and secondary (compound topographic index (CTI) and potential drainage density (PDD)) terrain features were calculated according to Moore et al. (1993), Dobos et al. (2000), Shary et al. (2002), Gessler et al. (1995), and McBratney et al. (2003).

The spatial maps of the primary and secondary terrain features were tabulated in the ArcGIS 9.3 software, with the detailed soil map of area 1. The objective was to correlate soil classes with terrain information to use this as additional information for delimitation of the mapping unit in the next stage.

Stage 2 - Applying patterns in area 2

In this stage, the main objective was to use all patterns and knowledge acquired in stage 1 to determine a digital soil map in an unknown area (area 2).

Field examination, collection, and processing of soil samples

Initially, area 2 was studied to recognize the general characteristics of the site. Satellite imaging and elevation data were used as field support. Afterwards, toposequences of 225 sampling points were collected at three depths (0.00 - 0.20, 0.40 - 0.60, and 0.80 - 1.00 m) and analyzed for chemistry and spectra.

Digital soil mapping based on patterns of stage 1

Quantification of soil properties by spectral models

From the soil spectral data of area 2, each physical and chemical property was quantified using the multiple regression models deduced from data of area 1, which allowed tabulation of soil properties estimated for each of the 225 soil samples. Additional information was provided by color measurement of surface and subsurface layers of wet soil samples in the laboratory using the colorimetric method.

Analysis of spectral curves

The spectral curves from each sampling point were visually compared to the patterns identified in stage 1 and assigned to a soil group. Thus, the soil class of greatest similarity to each sampling point was tabulated with soil properties estimated from the spectral data and used in final classification of each soil sample.

Cluster analysis

The soil samples collected in area 2 were classified in homogeneous groups in cluster analysis (Dematté et al., 2004a), which was based on spectral information for each soil sample. Therefore, cluster analysis compared all sampling points that determined similar groups of curves. The clustering strategy used was Average Linkage, which allowed identification of sequential, hierarchical, and non-overlapping groups (Sneath and Sokal, 1973). The similarity coefficient applied was Euclidean distance, and it was implemented in the software SPSS 11.0.
Soil classification based on all information acquired

After all data were collected, the procedure for final soil classification of each sampling point was: (1) soil samples were grouped based on visual patterns of spectral curves; (2) quantitative data of physical and chemical soil properties estimated from models deduced in stage 1 were tabulated, and color measurements were tabulated with other soil properties; and (3) the tabulated data were used to fit the results of cluster analysis, and each point was properly classified. The key-process was similar to interpretation of soil analysis in the traditional soil mapping method; however, additional properties were analyzed: (4) in situations where this information was not enough to classify a sampling point, we observed the cluster analysis of the most similar sample that had been classified. This soil class was then assigned to the unclassified sample; and (5) other data that supported the decision for the final soil classification were terrain features, such as slope and elevation. Each point was related to the relief features using a geographical information system. Based on patterns of stage 1, the possibility of occurrence of a certain soil class at a point was indicated based on terrain features. This information was considered in the final decision.

Soil classification followed the SiBCS (Brazilian Soil Classification System, Embrapa, 2013) and was also related with the USDA (2010) along the text and tables.

Spatial analysis and delineation of the soils (Satellite imaging supervised classification)

Supervised classification was used to characterize the surface of the study site through orbital information, based on the patterns obtained in stage 1. Thus, complementary information was obtained, not to classify the soil, but to complement the database to make decisions based on the delimitation of mapping units.

Relief analysis

Similar to traditional soil mapping, contour lines were mainly delimited with vertical equidistance of 20 m, and some observations were made in the slope map of the study site. In example 1, the cluster and spreadsheet analyses were sufficient to classify the soil. In example 2, the spreadsheet was not clear enough and the final decision was made based on cluster analysis. In example 3, the final decision was made based on the position of the point in the relief (Figure 2).

Delimitation of soils

All information obtained (classification of soil samples, terrain features, and supervised classification of satellite imaging) was organized in a database using the ArcGIS 9.3 software. Thus, information layers were used in the delimitation of mapping units (Figure 3), which was performed manually by digitalizing the vectors (polygons). Finally, soils of area 2 were obtained.

Stage 3 - Validation of the digital soil map

The digital soil map obtained in area 2 was validated using the cross-tabulation method, which correlated with the conventional soil map on a detailed level (1:20,000) developed in this study. This was carried out in two ways: (a) the soil class of each sampling point in the conventional soil map was compared with the soil class obtained from the digital soil mapping approach, and (b) cross-tabulation was compared with spatial information obtained from both approaches (conventional and digital) at the level of the mapping unit.

In both cases, the soil was first classified to the 3rd category level in the SiBCS (Brazilian Soil Classification System), and texture classification was added, for example a Latossolo Vermelho Distrófico argiloso (Embrapa, 2013) - Clayey Rhodic Hapludox (USDA, 2010). We used in the text Brazilian and USDA soil classification. Afterwards, the soil class was decomposed, and each criterion was evaluated separately. The characteristics evaluated were the same used in classifying the soil up to the 3rd category level and texture class: (a) soil class; (b) soil color classified in three types (red, yellowish red, and yellow), as color determination in the colorimeter (Munsell color system) was given in hue values with decimals (continuous variable); these values were classified as yellow if the measurements were above 7.5 YR, classified as yellowish red if color data were from 7.5 YR to 2.5 YR, and classified as red if values were below 2.5 YR; (c) soil fertility analysis, based on three main criteria: base saturation higher than 50 % (eutrophic), base saturation lower than 50 % (dystrophic), and Al saturation higher than 50 %; (d) Fe oxide contents in the soil were evaluated observing results of extraction by sulfuric acid; values higher than 180 g kg⁻¹ were considered iron rich and classified as ferric (higher than 180 g kg⁻¹ of Fe oxides); and (e) texture classes as described above.

Cross-tabulations resulted in confusion matrices, and indexes of classification accuracy were derived from these matrices. The indexes calculated were overall accuracy and the Kappa index (Story and Congalton, 1986; Congalton and Green, 1999).

Classification performance which was evaluated using the ranges proposed by Fonseca (2000) for the Kappa coefficient (K), were: K=0, Very poor; 0<K≤0.2, poor; 0.2<K≤0.4, Reasonable; 0.4<K≤0.6, Good; 0.6<K≤0.8, Very good; and 0.8<K≤1.0, Excellent.
Figure 2. Flowchart illustrating the work sequence.

Figure 3. Illustration of the arrangement of information layers that composed the digital soil map.
RESULTS AND DISCUSSION

Quantification of Soil Properties

Multiple regression equations were fitted to predict values of 19 soil properties from their spectral response (Table 1). Of these, five exhibited R² greater than 0.59, namely, Fe₂O₃, Al₂O₃, clay, Ki, and SiO₂. Fe₂O₃ stood out at 0.82. Our results corroborate those obtained by Janik et al. (1998), Nanni and Dematte (2006), Demattê et al. (2004a), and Demattê et al. (2014a). It is notable that high coefficients for the physical properties such as sand, clay, and Fe₂O₃ were achieved, since these parameters have a significantly greater influence on the spectral response of the soil.

The sum of bases (SB), cation exchange capacity (CEC), and base saturation (V) showed the following values for R²: 0.44, 0.46, and 0.29, respectively, in contrast with Nanni and Demattê (2001), Dunn et al. (2002), and Demattê et al. (2004a), who found values of R² greater than 0.74 for these properties. However, such properties often show coefficients with values lower than 50 % (Demattê and Garcia, 1999). Few studies have been carried out to explain the influence of chemical properties on the spectral response of soils (Demattê et al., 2004a), possibly due to the dynamic nature of soil reactions.

The estimated values were compared with values determined in conventional laboratory analyses for the purpose of verifying the possibility of using the data on soil fertility estimated by the equations, especially the data used as criteria to achieve the 3rd category level in soil classification. Values obtained in the equations tended to overestimate dystrophic soils and underestimate eutrophic and aluminic ones (Table 2). However, the percentage of accuracy exceeded 76 %, even reaching 98 %, as in the example of m groups.

Table 2. Matrix of accuracy and error of values determined in the laboratory by conventional soil analyses and values estimated by multiple regression equations for the variables base saturation (V), aluminum saturation (m), and aluminum exchangeable (Al³⁺)

<table>
<thead>
<tr>
<th></th>
<th>Determinded values</th>
<th>Estimated values</th>
<th>Overall accuracy</th>
</tr>
</thead>
<tbody>
<tr>
<td>V (%)</td>
<td>≤50</td>
<td>>50</td>
<td>Total</td>
</tr>
<tr>
<td>≤50</td>
<td>454</td>
<td>44</td>
<td>498</td>
</tr>
<tr>
<td>>50</td>
<td>103</td>
<td>24</td>
<td>127</td>
</tr>
<tr>
<td>Total</td>
<td>557</td>
<td>68</td>
<td>625</td>
</tr>
</tbody>
</table>

Overall accuracy = 0.76

<table>
<thead>
<tr>
<th>m (%)</th>
<th>≤50</th>
<th>>50</th>
<th>Total</th>
<th>≤50</th>
<th>>50</th>
<th>Total</th>
</tr>
</thead>
<tbody>
<tr>
<td>≤50</td>
<td>610</td>
<td>0</td>
<td>610</td>
<td>623</td>
<td>2</td>
<td>625</td>
</tr>
<tr>
<td>>50</td>
<td>13</td>
<td>2</td>
<td>15</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Overall accuracy = 0.98

<table>
<thead>
<tr>
<th>Al³⁺ (cmol c kg⁻¹)</th>
<th><4</th>
<th>≥4</th>
<th>Total</th>
<th>≤4</th>
<th>>4</th>
<th>Total</th>
</tr>
</thead>
<tbody>
<tr>
<td><4</td>
<td>515</td>
<td>2</td>
<td>517</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>≥4</td>
<td>99</td>
<td>9</td>
<td>108</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Total</td>
<td>614</td>
<td>11</td>
<td>625</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Overall accuracy = 0.84

(1) Values estimated by multiple regression equations; (2) Values determined in the laboratory by conventional soil analysis; (3) Base saturation (BS/CEC × 100); (4) Aluminum saturation (Al/Al + BS) × 100; (5) Number of total samples at three depths (0.00 - 0.20, 0.40 - 0.60, and 0.80 - 1.00 m).

Spectral curves as indicators for soil classification

The analyses of spectral curves for soil samples collected in area 1, which gave rise to the patterns applied in area 2, allowed determination of three distinct groups (Figure 4). The first group was characterized mainly by the presence of deep, well-drained soils, with texture ranging from sandy-clayey to clayey, especially in Latosols.

Table 1. Multiple regression equations developed from soil reflectance and obtained at ground level

<table>
<thead>
<tr>
<th>Property</th>
<th>Equation(1)</th>
<th>R²</th>
<th>RMSD(2)</th>
<th>ME(3)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Clay (g kg⁻¹)</td>
<td>Clay = 344.485 + 21,560.041 H2 + 1,973.068 B7 - 3,895.359 B21 - 10,231.5 H5 - 30,019.3 B3 + 21,789.511 B5 + 6,386.753 B4 + 2,877.608 H8 + 6,253.900 B13 – 4,353.122 B16</td>
<td>0.75</td>
<td>63.8</td>
<td>20.65</td>
</tr>
<tr>
<td>OM(4) (g kg⁻¹)</td>
<td>OM = 24,887 - 160.911 H4 – 91,569 B21 - 185.125 H3 - 282.773 H5</td>
<td>0.32</td>
<td>4.16</td>
<td>37.88</td>
</tr>
<tr>
<td>SiO₂ (g kg⁻¹)</td>
<td>SiO₂ = 10(1.291 – 6,225 B22 + 1,396 B5 – 4,150 H11 – 2,955 H13 + 2,926 B14)</td>
<td>0.59</td>
<td>2.12</td>
<td>20.07</td>
</tr>
<tr>
<td>Al₂O₃ (g kg⁻¹)</td>
<td>Al₂O₃ = 10(1,373 - 5,714 B20 - 2,883 H2 + 6,810 B13 - 4,254 B17)</td>
<td>0.81</td>
<td>2.21</td>
<td>16.90</td>
</tr>
<tr>
<td>Ki</td>
<td>Ki = 1,391 - 15,875 H11 + 10,696 H2 + 15,438 H3 - 25,592 H9 + 26,745 H7 + 2,890 B18</td>
<td>0.61</td>
<td>0.19</td>
<td>13.40</td>
</tr>
</tbody>
</table>

(1) Bands and heights selected; (2) Root mean square deviation; (3) Mean error; (4) Organic matter; (5) Sum of bases (Ca+Mg+K); (6) Cation exchange capacity (BS+H+Al).
(Oxisols). These soils show spectral curves with low reflectance intensity in visible and infrared light. High concentrations of magnetite reduce the reflectance intensity of soils (Demattê et al., 2001) because magnetite does not show spectral features. At 1,400 and 1,900 nm, where features attributed to the OH molecule of soil hygroscopic water occur (Ben-Dor, 2002), these soils have low intensity features. In the 2,200 nm wavelength region, a characteristic feature of 1:1 minerals appears, as indicated by Demattê and Garcia (1999).

The second group (Figure 4) consisted of soils with a textural B horizon typical of Argisols (Alfisols/Ultisols). We observed a gradual decrease of reflectance intensity from surface to subsurface layers, mainly because of the increase of clay content in deeper soil layers, in agreement with results observed by Sousa Junior et al. (2008). However, the spectral curve of the surface was significantly influenced by SOM, with consequent smoothing of the absorption features (Demattê and Garcia, 1999). In subsurface layers, there is more evidence of absorption bands within 1400 - 1900 nm because of the OH molecule of soil hygroscopic water (Ben-Dor, 2002) and the presence of 2:1 minerals (Demattê et al., 2004a). Thus, our results showed types of curves that differentiate soil samples from surface and subsurface layers, corroborating Demattê et al. (2004a), Rizzo et al (2014) and Vasques et al. (2014).

In the third and last group (Figure 4), sandy soils were joined, especially soils of the Quartzarenic Neosol class (Typic Quartzipsam). These soils are associated with lower contents of OM and iron oxides, with mineralogy in the sand fraction consisting predominantly of quartz (Resende et al., 2005), resulting in high reflectance intensity. This is evident when comparing the spectral curve of this group with that of group 1. This increase in reflectance was reported by Barnes and Baker (2000), who obtained high positive correlations between soil reflectance and increase in the sand fraction, and high negative correlations proportional to an increase in clay content. Another fact observed for patterns defined in group 3 is little distinction between spectral curves at different depths, which may be related to the textural similarity between soil layers (Souza Junior et al., 2008). However, layer A shows a slightly less intense reflectance than reflectance in the other layers because of greater OM accumulation.

General characteristics of the Digital Soil Map (DSM) and comparison to the Conventional Map (CM)

The coverage area in the DSM is greater than in the CM (Table 3). The CM covers only sugarcane crop areas, thus bypassing roads, electrical lines, and other noncrop areas. However, this does not affect the correlation calculations between the maps because only areas in common were evaluated for both methods.

For soil classes in the 1st category level (orders), the DSM showed five classes, whereas the CM showed seven classes (Table 3). For Neossols (Lithic Neosols and Arenic Neosols), the 2nd category level was considered since the soils showed very distinct characteristics. Lithic Neossols and Gleysols were not covered in the DSM, although they showed a small index of representation in the CM (0.05 and 0.03 %, respectively).

In comparison to the CM, the DSM shows double the number of soil classes (43 classes). This is attributed to the absence of the aluminic character in digital classification. This method of soil analysis overestimated the dystrophic characteristic and underestimated the eutrophic and aluminic ones. This is most evident in the percentage of dystrophic soils.
found; although they exhibited a high percentage in the CM (67%), in the DSM, dystrophic soils reached 87%.

Another relevant factor is that soils with a ferric character showed values near the significance level. Although the ferric property is a classification criterion in the 3rd category level, in conventional conditions, analyses of ferric properties are not often carried out, mainly due to the time required for the analysis and the high costs. This leads to the use of subjective methods of determination, such as magnetism. Analyses of ferric properties could be applied to samples from soils used in our study as well as in other conditions requiring less time to conduct and at lower costs.

From the confusion matrix generated by cross tabulation, some statistical indicators were analyzed to investigate the comparison between maps (Table 4). For point (punctual information) data, the variables of class, color, and texture showed better performance (good) compared to the variables of fertility and Fe (Table 4). The highest value for soil class shows that soil classification and determination of textural groups in the 1st category level were efficient, in agreement with Shepherd and Walsh (2002) and Islam et al. (2003). Color obtained a high index of success because it was obtained in the colorimetric technique (Campos and Demattê, 2004). These authors concluded that, in order to obtain accurate results, measurements in colorimetry should replace color readings using the visual Munsell color chart. Determining color by the human eye is subjective, generating differences in soil classification.

Fertility had poor performance (Table 4). The low \(k \) value is associated with the prevalence of this property. High prevalence results in a high level of agreement expected in randomness, which results in lower \(k \) values. In turn, a property of low prevalence results in higher \(k \) values (Pinto et al., 2007); that is, given that fertility shows high predominance of dystrophic soils and Fe has high predominance of non-ferric soils, there are high chances of inferring, at random, and being sure that these soils are dystrophic and non-ferric and that the \(k \) index results in lower values.

The results showed that spatial data had a tendency of high accuracy levels for the different variables analyzed individually (po ranging from 0.51 to 0.79), but, for texture, the performance of the kappa index ranged from good to reasonable.

The comparison between the classifications obtained for the two methods in the 1st, 2nd, and 3rd level (considering fertility), 3rd level (considering texture), and 3rd level (considering fertility plus texture) shows a good correlation of scores in the 1st and 2nd levels, with accuracy rates of 0.79 and 0.60, respectively, whereas for scores in the 3rd level, correlations ranged from reasonable to poor (Table 5). Higher levels were expected to decrease the accuracy rate because the greater the number of characters involved, the higher the difficulty in reaching consensus. However, the greatest losses of accuracy occur when associated with fertility.

The results for spatial data follow the same trends as point data, but with lower accuracy rates (Table 5). When fertility is inserted, the final mapping unit for this study is reached, with an accuracy rate of 0.08. Although fertility is difficult to assess, other variables such as class, color, and texture are subject to determination. If texture is taken as the 3rd level of classification, the results obtained are similar to those reported

Table 3. Comparisons among several characteristics observed in the digital and conventional soil maps

<table>
<thead>
<tr>
<th>Characteristic</th>
<th>Conventional map</th>
<th>Digital map</th>
</tr>
</thead>
<tbody>
<tr>
<td>Total area</td>
<td>12,986.92 ha</td>
<td>15,999.4 ha</td>
</tr>
<tr>
<td>Soil classes of 1st and 2nd levels (such as Neosols)</td>
<td>Cambisols, Gleysols, Latossols (Oxisols), Nitisols (Kandic), Argisols (Ulti/Alfisols), Quartzarenic Neosols (Typic Quartzpisament), Lithic Neosols (Lithic soils)</td>
<td>Cambisols, Latossols (Oxisols), Nitisols (Kandic), Argisols (Ulti/Alfisols), Quartzarenic Neosols (Typic Quartzpisament)</td>
</tr>
<tr>
<td>Main soil classes</td>
<td>Latossols (Oxisols) (65.2 % of total area)</td>
<td>Latossols (Oxisols) (73.6 % of total area)</td>
</tr>
<tr>
<td>Less pronounced soil classes</td>
<td>Lithic Neosols (Lithic soils) (0.05 % of total area); Gleysols (0.03 % of total area)</td>
<td>Cambisols (0.17 % of total area)</td>
</tr>
<tr>
<td>Number of soil mapping units</td>
<td>43 units</td>
<td>21 units</td>
</tr>
<tr>
<td>Main soil mapping units</td>
<td>LVAd4 (12.1 % of total area); RQod5 (11.6 % of total area)</td>
<td>LVAd3 (32 % of total area); RQod5 (12 % of total area)</td>
</tr>
<tr>
<td>Fertility classes</td>
<td>Eutrophic, Dystrophic, Aluminic</td>
<td>Eutrophic, Dystrophic</td>
</tr>
<tr>
<td>Main fertility class</td>
<td>Dystrophic (67 % of total area)</td>
<td>Dystrophic (87 % of total area)</td>
</tr>
<tr>
<td>Area of ferric soils</td>
<td>14 % of total area</td>
<td>11 % of total area</td>
</tr>
<tr>
<td>Textural groups</td>
<td>Clayey, Sandy Clayey, Clayey Loamy, Sandy Loamy, Sandy Loamy, Sandy</td>
<td>Sandy Clayey, Clayey Loamy, Sandy Loamy, Sandy</td>
</tr>
<tr>
<td>Main textural group</td>
<td>Clayey Loamy (38.1 % of total area)</td>
<td>Clayey Loamy (43 % of total area)</td>
</tr>
</tbody>
</table>

1. Classes obtained according to criteria established by Embrapa (2013) as related with USDA (2010); 2. Texture divided into the following groups: 1 - clayey (>60 % clay); 2 - sandy clayey (35 - 60 % clay); 3 - clayey loamy (25 - 35 % clay); 4 - sandy loamy (15 - 25 % clay); and 5 - sandy (<15 % clay); 4. LVAd4 (Red Yellow Oxisol Distrophic sandy loam); RQod5 (Typic Quartzpisament), LVAd3 (Red Yellow Oxisol Distrophic clay loam).
by Demattê et al. (2004b). The authors concluded that it was possible to reach the 3rd category level. Chagas et al. (2007) used artificial neural networks to predict soil classes and found accuracy rates of 0.3. The authors attributed the large discrepancy obtained for the comparisons to the widespread nature of the conventional soil map. The multiple information from geotechnologies on soil mapping was recently conducted by Demattê et al. (2015) where used also spectra from images plus terrain models reaching important results when compared with traditional mapping, in agreement with the present work. Another important factor is that accuracy and effectiveness of surveys conducted conventionally are contingent upon the ability of the pedologist. Indeed Bazaglia Filho et al. (2013) showed differences in maps developed between five pedologists, which show the importance of increasing accuracy through geotechnologies, as indicated in the present study.

Thus, the present manuscript associated with literature, indicate the importance on to aggregate multiple techniques, such as remote/proximal sensing with relief parameters, to achieve a pedological map. Indeed, these tools may also be important to upgrade old maps and/or on the confection of new ones with more accuracy, less time and lower cost.

<table>
<thead>
<tr>
<th>Variable</th>
<th>Statistical Indexes (1)</th>
<th>Performance (2)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>po</td>
<td>pe</td>
</tr>
<tr>
<td>Class</td>
<td>0.79</td>
<td>0.59</td>
</tr>
<tr>
<td>Color</td>
<td>0.72</td>
<td>0.48</td>
</tr>
<tr>
<td>Fertility</td>
<td>0.69</td>
<td>0.65</td>
</tr>
<tr>
<td>Iron</td>
<td>0.80</td>
<td>0.76</td>
</tr>
<tr>
<td>Texture</td>
<td>0.58</td>
<td>0.29</td>
</tr>
<tr>
<td>Class</td>
<td>0.75</td>
<td>0.59</td>
</tr>
<tr>
<td>Color</td>
<td>0.72</td>
<td>0.47</td>
</tr>
<tr>
<td>Fertility</td>
<td>0.70</td>
<td>0.68</td>
</tr>
<tr>
<td>Iron</td>
<td>0.79</td>
<td>0.76</td>
</tr>
<tr>
<td>Texture</td>
<td>0.51</td>
<td>0.26</td>
</tr>
</tbody>
</table>

(1) po: total accuracy or real concordance; pe: random concordance; Kappa: kappa index; var (k): variance of kappa index; Z: statistical index to test the significance of kappa index: If Z>1.96, difference is significant at 95 % confidence threshold; if Z>2.58, difference is significant at 99 % confidence threshold. (2) Classification in the kappa index.
CONCLUSIONS

The spectral curve patterns allowed determination of three distinct soil groups, namely: (a) clayey in the surface and subsurface soils, (b) soils with textural differences between depths (typical of soils with Bt horizon), and (c) sandy soils.

The method for quantification of attributes such as Al\(^{3+}\), CEC, base and aluminum saturation needs to be adjusted or modified to reliably achieve the 3rd category level in soil classification. However, for properties such as clay, sand, Fe\(_2\)O\(_3\), and Al\(_2\)O\(_3\), the method was efficient, with \(R^2\) of 0.75, 0.71, 0.82, and 0.81, respectively.

The proposed method obtained information that assisted in soil classification and mapping in the 1st category level with 75% accuracy, in the 2nd category level with 60% accuracy, and in the 3rd category level with 34% accuracy considering texture for the 3rd level. The performance of classification was good in the 2nd category level and reasonable when information on soil texture is added to it. Furthermore, when fertility is considered, the accuracy index reaches 8%.

The comparison of five textural groups between both conventional and digital methods reached 58% accuracy.

There is clear importance of soil spectroscopy (from the surface and subsurface) on soil discrimination. Soil surface information from the satellite was useful for a first view on the discrimination of surface data. The next step was to achieve undersurface spectroscopy data from samples collected at field. Afterwards, both surface (by remote sensing) and subsurface (by proximal sensing) information, merged with relief parameters, could provide the method with important results as to support pedological mapping.

We observed the importance of using multiple techniques simultaneously to support soil mapping. Nevertheless, the method still requires the interpreter’s knowledge in making the final decision. Fieldwork is also important because it is the basis for designing patterns, as well as for defining situations where digital techniques do not reach adequate levels. Further studies are suggested as to associate field observations with automated systems for the decision-making process.

ACKNOWLEDGMENT

Authors thank GeoSS (Geotechnologies in Soil Science Group, http://esalqgeocis.wix.com/english).

REFERENCES

