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ABSTRACT: The intensive nature of soil use in vegetable production areas has led to a 
marked decrease in soil quality. The objective of this study was to evaluate the effects 
of adoption of soil management systems on vegetable production with regards to the 
chemical properties of a Rhodic Ferralsol after five years and to evaluate the use of 
the Principal Component Analysis (PCA) statistical tool in discriminating the different 
treatments. The experiment was conducted under field conditions in central Brazil in a 
randomized block design with four replications and a 3 × 2 factorial arrangement (three 
soil management systems × two cover crops). The soil management systems used were 
NT (no-tillage), RT (reduced tillage), and CT (conventional tillage). The cover crops used 
were corn (Zea mays) alone and corn intercropped with the gray velvet bean (Stizolobium 
niveum). Reduced tillage showed the highest values of sum of bases, cation exchange 
capacity (T), and total organic carbon contents in the 0.00-0.05 m layer. In the same 
layer, RT and CT showed higher values of pH and K content. No-tillage and RT showed 
the highest P and Ca2+ contents and H+Al and T values. In the 0.05-0.10 m layer, RT had 
higher a pH value and Mg2+ contents. No-tillage and CT had higher potential acidity in 
this layer. The management systems (0.10-0.30 m) and the cover plants (all layers) had 
no effect on the properties analyzed. The use of PCA determined that the two principal 
components explained the following percentage of the data variance: 90.8 % (0.0-0.05 m), 
79.8 % (0.05-0.10 m), and 83.1 % (0.10-0.30 m). Analysis of the eigenvectors and the 
grouping of treatments in PCA also showed that RT was most effective in improving soil 
fertility properties. Reduced tillage was most effective in increasing soil fertility after 
five years. The PCA is recommended as a useful tool and it allowed the identification of 
patterns not revealed by traditional tools.
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INTRODUCTION
The intensive nature of soil use in areas of vegetable production has often led to a 
significant decrease in soil quality (Valarini et al., 2011). Improvement in soil quality in 
these areas should be achieved through the adoption of conservation systems. Assessment 
of the effects of such systems on chemical properties is an important part of evaluation 
of soil quality (Vezzani and Mielniczuk, 2009).

According to the 2015 Brazilian vegetable production statistics (Santos et al., 2015), 
the crop area of species belonging to this group in Brazil is 656,730 ha, with production 
estimated at 19.62 Mg, generating 2.4 million jobs and production value of R$ 53.4 billion 
after sale to the final consumer. Average yield is therefore about 30 Mg ha-1, indicating 
the great yield potential of these species that require a large supply of agricultural 
inputs, especially water and nutrients. These numbers demonstrate the socio-economic 
importance of the sector. However, there has been little concern for adoption of soil 
management practices and conservation systems; this lack of concern compromises 
soil quality in vegetable production areas in Brazil (Valarini et al., 2011).

Agricultural production systems that have low soil disturbance, especially the no-tillage 
system, have proven effective in recovery of soil chemical quality in tropical and subtropical 
regions. The effects observed in these systems include nutritional enrichment (Santos 
et al., 2008) and improvement in the amount and quality of soil organic matter (SOM) 
(Conceição et al., 2013; Souza et al., 2014). For example, Santos et al. (2008) and 
Costa et al. (2009) found results that support that no-tillage and reduced tillage systems 
are able to increase P and Ca2+ contents. However, the vertical distribution of these 
chemical elements in the soil profile can be affected by the use of low disturbance 
systems (Schlindwein and Anghinoni, 2002). This is especially important for elements 
that have low mobility in soils, which are generally maintained on the surface, and it 
can be associated with processes and properties such as specific adsorption and the 
preference of cations with high ionic strength for adsorption sites. 

Another aspect reported in several studies that aim to evaluate the effects of management 
systems on soil chemical properties is an increase in soil acidity brought about by the no-tillage 
system (Ciotta et al., 2002; Santos et al., 2008). Ciotta et al. (2002) attributed this increase 
in the acidity of the soils managed under a no-tillage system to the surface application of 
phosphate and N fertilizers, as well as to their great solubility, and the possibility of long 
periods without soil correction. The negative effects of soil acidity on crops can be minimized 
in the long term because of increases in SOM contents that are able to complex the Al3+.

The effects of adoption of soil management systems are not immediate. Zhang et al. (2016) 
showed that the full capacity of NT for accumulating soil carbon is reached in about ten 
years after its adoption, especially when the soil was previously in agricultural use under 
conventional systems. The SOM is linked to many chemical processes in tropical soils, whose 
mineralogy is dominated by kaolinite, aluminum, and iron oxides (Fontes et al., 2001). 
Studies that aim to evaluate the effects of management systems on chemical properties 
should consider time since adoption in interpretation of results. It is possible that in short and 
medium term experiments, soil management systems that incorporate the plant residues 
of cover crops in the sub-surface layers, systems such as reduced tillage, exhibit higher 
potential for modifying soil chemical properties than no-tillage systems. Rapid degradation 
of these residues when incorporated supports this consideration (Carvalho et al., 2008), 
and this can accelerate the nutrient release and SOM accumulation (Lima et al., 2016).

However, most of the studies cited were conducted in field grain crop production areas, 
and few studies have been conducted in vegetable production areas. In the latter, 
particular aspects of production systems, such as the cultivation of short cycle commercial 
species, high soil disturbance, and the high fertilization rates normally used can change 
the nutrient and SOM dynamics (Lima et al., 2016). It is also possible that the high 
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fertilization rates used in vegetable production areas hinder evaluation of the effects of 
soil management and cover crops on soil chemical properties, especially when traditional 
statistical tools are used. 

The use of multivariate tools may allow a more comprehensive and integrated analysis of 
the data, increasing analytical capacity. Principal component analysis (PCA) is a multivariate 
statistical method that consists of rewriting the coordinates of samples in a system more 
convenient for analysis, thus allowing reduction in the number of variables evaluated and 
assessment of the importance of original variables, where those with greatest weight 
are more important from a statistical perspective (Santi et al., 2012). In PCA, each factor 
is a linear combination of the original variables, and when the two principal factors 
can cumulatively retain a sufficient amount of the total information contained in the 
set of variables, it is possible to arrange them as one point in a two-dimensional graph 
(Valladares et al., 2008). The PCA allows detection of anomalous samples, relationships 
among variables, and groups of samples with similar properties (Lyra et al., 2010). In soil 
science, PCA has been used in studies on chemical and physical properties that affect 
crop yield (Santi et al., 2012), on pedological relationships that aid soil classification 
(Gomes et al., 2004; Valladares et al., 2008), and on the effects of adoption of conservation 
practices on soil properties (Santos et al., 2008; Lima et al., 2015).

The working hypothesis was conservation systems maintain better fertility levels than 
the conventional production system after five years. The objective of this study was to 
evaluate the effects of the adoption of soil management systems on vegetable production 
with regards to the chemical properties of a Rhodic Ferralsol five years after adoption, and 
to evaluate the use of the PCA statistical tool in discriminating the different treatments. 

MATERIALS AND METHODS

Environmental characterization of the area used to conduct the experiment

The experiment was conducted under the soil and climate conditions of the Cerrado 
(Brazilian tropical savanna) in an area in Gama, Distrito Federal, at the geographical 
coordinates of 15° 56’ S and 48° 08’ W and elevation of 997.6 m above sea level. 
The regional climate is classified as Aw according to the Köppen classification system 
(tropical savanna with rainfall concentrated in the summer). The average temperature 
during the experimental period was 22.92 °C and average annual rainfall was 1,516 mm.

The soil where the experiment was conducted is a Rhodic Ferralsol (WRB, 2014), which 
corresponds to a Latossolo Vermelho Distrófico (Santos et al., 2013) with silty clay texture 
(clay, silt, and sand contents of 507, 437, and 56 g kg-1, respectively). The chemical properties 
of the 0.00-0.10 m layer prior to setting up the experiment were as follows: pH(H2O) 5.8±0.1, 
P 75.8±17.3 mg dm-3, K 253.8±7.5 mg dm-3, Ca2+ 12.6±1.0 cmolc dm-3, Mg2+ 3.7±0.1 cmolc dm-3, 
Al3+ 0.1±0.1 cmolc dm-3, H+Al 5.4±0.5 cmolc dm-3, SB 16.9±1.0 cmolc dm-3, t (effective CEC) 
17.0±0.9 cmolc dm-3, T (CEC at pH 7.0) 22.3±0.5 cmolc dm-3, V 75.5±2.8 %, and TOC 
17.3±0.7 g kg-1. The values for the 0.00-0.30 m layer were: pH 5.3±0.1, P 19.1.8±3.2 mg dm-3, 
K 95.3±6.0 mg dm-3, Ca2+ 8.0±0.5 cmolc dm-3, Mg2+ 3.6±0.1 cmolc dm-3, Al3+ 0.2±0.1 cmolc dm-3, 
H+Al 6.2±0.4 cmolc dm-3, SB 11.8±0.5 cmolc dm-3, t 12.0±0.4 cmolc dm-3, T 18.1±0.5 cmolc dm-3, 
V 65.5±2.5 %, and TOC 12.0±1.2 g kg-1.

Experimental design and management systems adopted

The experiment was conducted from 2008 to 2012. The area, which originally had shrubby 
vegetation (Campo sujo), has been used in a conventional vegetable production system 
since the beginning of the 1980s. Data used in this study were collected at the end of the 
fifth crop cycle, conducted in 2012. Samples were obtained for the 0.00-0.05, 0.05-0.10, 
and 0.10-0.30 m soil depth layers.
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A randomized block design was adopted with four replications, in a 3 × 2 factorial 
arrangement consisting of three management systems, no-tillage - NT, reduced tillage - RT, 
and conventional tillage - CT, and two cover crops, corn alone (Zea mays) – C and 
intercropping of corn and gray velvet bean (Stizolobium niveum) - CB. Each plot was 
9 m wide and 12 m long, for an area of 108 m2.

Management of the soil and cover crops, as well as the history of cultivation of the area, were 
previously described by Souza et al. (2014) and are summarized in the following paragraphs.

Under NT, soils were fertilized, limed, and tilled for planting. For RT, a single harrowing 
was used in tillage for subsurface incorporation (about 0.10 m deep) of the crop residue. 
In CT, one plowing and two harrowing passes were performed, incorporating the residues 
of plants used as cover crops (about 0.20 m deep). 

The history of cultivation and fertilizer application is as follows: year 1 - cultivation of 
onions with fertilization at planting of 600 kg ha-1 of NPK 04-30-16 and 400 kg ha-1 of 
ammonium sulfate as topdressing; year 2 - cultivation of cabbage with fertilization at 
planting of 1,250 kg ha-1 of simple superphosphate + 250 kg ha-1 of ammonium sulfate 
and 400 kg ha-1 of ammonium sulfate as topdressing; year 3 - cultivation of broccoli 
with fertilization at planting of 1,000 kg ha-1 of simple superphosphate + 250 kg ha-1 
of ammonium sulfate and 500 kg ha-1 of ammonium sulfate as topdressing; year 4 - 
cultivation of squash with fertilization at planting of 300 kg ha-1 of simple superphosphate 
and 150 kg ha-1 of ammonium sulfate; and year 5 - cultivation of cabbage with fertilization 
at planting of 1,000 kg ha-1 of simple superphosphate + 250 kg ha-1 of ammonium sulfate 
and 500 kg ha-1 of ammonium sulfate as topdressing. Soil acidity was corrected with 
dolomitic limestone to achieve 70 % base saturation when setting up the experiment.

The cover crops were always planted in the rainy season, in November and December. 
Vegetable seeds or seedlings were always sown or transplanted in February and May. Corn 
was planted with between-row spacing of 0.80 m and five seeds per linear meter, using 
corrective phosphate fertilization with 100 kg ha-1 of P2O5 and the commercial hybrid Ag 
1051 Agroceres®, generating a population of 55,000 plants ha-1. Gray velvet bean was 
planted with a between-row spacing of 1.60 m and two seeds per linear meter, 30 days 
after planting the corn. Crop residue was shredded, followed by glyphosate application 
to stop regrowth, and one week before planting the vegetables, Paraquat was applied.

Soil sampling, determination of chemical attributes, and statistical analyses 

Four small pits, measuring 0.8 m long × 0.8 m wide × 0.5 m deep, were dug in each 
experimental plot for soil sampling. In these pits, the 0.00-0.05, 0.05-0.10, and 0.10-0.30 m 
soil layers were sampled. Four simple samples, one from each small pit, formed a 
composite sample. After collection, the samples were placed in labeled plastic bags and 
then taken to the Soil Fertility laboratory where they were air dried and passed through 
a 2 mm mesh sieve to obtain air-dried fine earth.

The contents of available P, K, and Na; Ca2+, Mg2+ and Al3+, H+Al, and total organic carbon 
(TOC); and the pH values in H2O were determined according to Donagema et al. (2011). 
Values of the sum of bases (SB), cation exchange capacity (t), cation exchange capacity 
at pH 7.0 (T), and base saturation (V) were calculated from the results of laboratory 
measurements, also according to Donagema et al. (2011).

The data obtained were checked for normal distribution and then subjected to analysis of 
variance (Anova). When significant, according to Anova, means were tested by the Scott 
Knott test at a significance level of 5 %. The relationships between variables were evaluated 
by determining the Pearson correlation coefficients at the same significance level.

Grouping of the treatments based on the properties of soil fertility was performed with 
the use of PCA for each depth evaluated. Both the eigenvalues and eigenvectors were 
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determined, and the treatments used were also grouped. To perform PCA, the treatments 
were grouped considering the soil management system and the cover crops used. 
For determination of patterns and interpretation of the results, the eigenvectors with 
moduli greater than or equal to 0.70 were considered.

RESULTS AND DISCUSSION
A detailed analysis of the results shows that the only effect on the fertility properties 
analyzed after five years resulted from the soil management systems (Table 1).

In general, soils collected in the three management systems showed high fertility, probably 
reflecting the high fertilization rates used. These high soil fertilization rates probably also led 
to results that did not allow for easy detection of the effects of management systems and 
cover crops on the properties analyzed. This leads to the hypothesis that the high fertilization 
rates used throughout the experiment, which are common in vegetable production areas, 
probably made it difficult to detect the effects of the soil management systems and cover 
crops, especially when each property is analyzed one at a time. However, multivariate 
statistical analysis tools allow the data to be evaluated interactively, increasing the possibility 
of detecting patterns that are not easily observed when traditional tools are used. According 
to the classification reported by Alvarez V. et al. (1999), the fertility properties analyzed can 
be rated as follows: concentrations of P, K, Ca2+, Mg2+, Al3+, SB, t, and T can be classified as 
good or very good for all treatments and depths; potential acidity (H+Al) can be classified 
as high or very high in all treatments and depths; V can be classified as medium for all 
treatments and depths; pH values can be classified as low for all treatments and depths, 
except for RT at depths of 0.05-0.10 and 0.10-0.30 m, which can be considered good; TOC 
levels can be considered high or very high in the samples taken from the 0.00-0.05 and 
0.05-0.10 m layers, and medium in the 0.10-0.30 m layer in all treatments.

Table 1. Fertility properties in a Rhodic Ferralsol with vegetable crops under conservation soil management systems and cover crops 
after five years of adoption of conservation soil management systems adoption
Management 
system and 
cover crop

pH(H2O) P K Na Ca2+ Mg2+ Al3+ H+Al SB t T V TOC

mg dm-3 cmolc dm-3 % g kg-1

0.00-0.05 m
NT 5.17 b 87.88 a 109.38 b 7.63ns 6.00 a 2.54ns 0.09ns 8.91 a 8.71 b 8.80 b 17.62 a 49.42ns 27.83 b
RT 5.48 a 95.60 a 135.75 a 8.00ns 6.93 a 3.01ns 0.04ns 7.59 b 10.32 a 10.36 a 17.91 a 57.31ns 31.29 a
CT 5.37 a 58.35bns 124.13 a 8.25ns 5.38 b 2.15ns 0.06ns 7.58 b 7.88 b 7.93 b 15.45 b 50.80ns 23.84 c
Single 5.35ns 78.78ns 121.83ns 8.25ns 6.06ns 2.48ns 0.07ns 8.18ns 9.05ns 8.96ns 17.07ns 51.74ns 27.73ns

Intercropping 5.33ns 82.43ns 124.33ns 7.67ns 6.05ns 2.65ns 0.06ns 7.87ns 8.89ns 9.11ns 16.92ns 53.29ns 26.68ns

0.05-0.10 m
NT 5.36 b 83.99ns 91.38ns 8.00ns 5.51ns 1.51 b 0.09ns 8.39 a 7.29ns 7.38ns 15.68ns 46.36ns 23.64ns

RT 5.63 a 122.78ns 108.25ns 8.25ns 6.19ns 2.18 a 0.03ns 6.65 b 8.68ns 8.71ns 15.33ns 56.27ns 23.65ns

CT 5.39 b 61.51ns 101.25ns 8.00ns 5.21ns 1.63 b 0.06ns 7.70 a 7.13ns 7.19ns 14.83ns 47.93ns 24.00ns

Single 5.47ns 75.53ns 101.92ns 8.00ns 5.82ns 1.79ns 0.058ns 7.55ns 7.90ns 7.96ns 15.45ns 50.95ns 24.14ns

Intercropping 5.44ns 103.33ns 99.83ns 8.17ns 5.46ns 1.75ns 0.063ns 7.61ns 7.50ns 7.56ns 15.11ns 49.42ns 23.39ns

0.10-0.30 m
NT 5.41ns 58.19ns 85.75ns 8.75ns 5.43ns 1.76ns 0.13ns 7.60ns 7.44ns 7.57ns 15.04ns 48.92ns 21.02ns

RT 5.58ns 63.19ns 99.00 ns 7.75ns 5.39ns 1.75ns 0.04ns 6.49ns 7.42ns 7.47ns 13.91ns 53.46ns 21.20ns

CT 5.38ns 44.25ns 91.38 ns 8.13ns 4.39ns 1.71ns 0.08ns 7.20ns 6.37ns 6.45ns 13.57ns 46.99ns 20.65ns

Single 5.46ns 52.88ns 91.83ns 8.00ns 5.11ns 1.74ns 0.08ns 6.85ns 7.12ns 7.20ns 13.97ns 50.79ns 20.52ns

Intercropping 5.45ns 57.53ns 92.25ns 8.42ns 5.11ns 1.74ns 0.08ns 7.34ns 7.04ns 7.12ns 14.38ns 48.80ns 21.39ns

Means followed by the same letter are equal by the Scott-Knott test at the level of 5 %. NT: No-tillage; RT: Reduced tillage; CT: Conventional tillage. 
Single: NT/RT/CT with corn alone; Intercropping: NT/RT/CT intercropped with gray velvet bean. pH in water at a ratio of 1:2.5 v/v; P, K, and Na: 
extractor Mehlich-1; Ca2+ and Mg2+: extractor KCl 1 mol L-1; Al3+: extractor KCl 1 mol L-1; H+Al: extractor calcium acetate 0.5 mol L-1; SB: sum of bases; 
t: effective cation exchange capacity (SB+Al3+); T: cation exchange capacity at pH 7.0; V:  bases saturation; TOC: total organic carbon determined 
by oxidation with K2Cr2O7.  
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The effects of management systems on soil acidity components are ordered as follows. 
The RT and CT systems showed higher pH values in the 0.00-0.05 m layer. In the 
0.05-0.10 m layer, RT showed higher pH than NT and CT. Furthermore, the highest 
potential acidity of the surface layer (0.00-0.05 m) was observed for NT. The NT system, 
together with the CT, also showed greater potential acidity than RT in the subsurface 
layer (0.05-0.10 m). No effects of the management systems were observed on the Al3+ 
content and base saturation (V).

As previously reported, soil acidity was corrected using dolomitic limestone when the 
experiment was set up in order to reach a V of 70 % and raise the contents of Ca2+ 
and Mg2+. The high acidity of the soil may be linked to this long period during which 
soil acidity was not corrected. Ciotta et al. (2002) reported that in NT the application 
of fertilizer to the soil surface leads to higher acidity of the upper layers due to the 
dissolution of phosphate and N fertilizers. The authors also reported that acidification of 
the surface layers is strengthened when long periods go by without new lime application 
and when high fertilizer rates are applied, as occurred in the present study. Systems 
with soil tillage, such as RT and CT, dilute the acidity in the topsoil, reducing its impact 
on the surface. However, in NT the deleterious effects of soil acidity can be minimized 
in the long term by increased SOM levels because these organic compounds act in 
complexation of Al3+ (Vieira et al., 2013).

The pH values are the result of the ability of the systems to maintain higher V values. 
This is reinforced by the positive correlation between V and pH observed for the three 
depths evaluated (Table 2). The relationship between pH and V has been known for a 
long time, as shown in the study of Raij et al. (1968), and this is linked to the fact that 
increasing V values mean higher occupancy loads of the soil exchange complex by basic 
hydrolysis of cations, leading to an increase in the pH of the soil solution.

The RT and NT systems caused higher values of available P and Ca2+ and an increase 
in the value of CEC at pH 7.0 at the surface. Less mobile elements, such as P, in soils 
have greater horizontal and vertical variability in NT than CT due to the residual effect 
of fertilizers on the soil surface and in the plant row (Schlindwein and Anghinoni, 2002). 
An increase in surface P contents in soils in low-tillage systems (NT and RT) has been 
reported by other authors (Santos et al., 2008; Costa et al., 2009). The higher surface P 
contents in RT and NT are probably linked to the greater specific adsorption capacity of 
this element in soils rich in Fe and Al oxides, minerals commonly found in tropical and 
subtropical soils, retaining it in non-labile forms (Novais et al., 2007). 

The NT system also showed higher Ca2+ contents in the 0.00-0.05 m layer compared to 
CT in a Latossolo Vermelho Distrófico típico under different soil management and crop 
rotation systems. Souza et al. (2012) found that NT promoted an increase in Ca2+ contents 
in the 0.00-0.10 m layer in a Distroferric Red Ferralsol under different management 
systems, with and without application of gypsum. Surface accumulation of Ca2+ may 
be associated with the surface application of lime and the higher ionic strength of this 
cation in solution, as well as preferential adsorption of divalent cations compared to 
monovalent cations (Freire et al., 2003; Wiethölter, 2007).

In the 0.00-0.05 m layer, the NT system showed a lower content of K than RT and CT. Like 
CT, NT showed lower SB and t than RT did. The lower content of K is probably associated 
with the fact that NT adsorption sites are mainly saturated by Ca2+, due to surface liming 
and the preferential adsorption of divalent cations, as mentioned, and that can result in 
greater leaching of K. The higher concentrations of K, as well as SB values, in RT may also 
be related to incorporation of crop residues to the depth of about 0.10 m, accelerating 
their decomposition. The higher Mg2+ content in the 0.05-0.10 m layer observed in RT 
may also be related to this fact. Carvalho et al. (2008) found that the decomposition of 
cover crop plant residues is accelerated when they are incorporated into the subsurface 
layers, possible accelerating nutrient release.
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Table 2. Pearson correlation coefficients determined for the relationships among the soil fertility properties determined in a Rhodic 
Ferralsol with vegetable crops under conservation soil management systems and cover crops after five years 

pH(H2O) P K Na Ca2+ Mg2+ Al3+ H+Al SB t T V TOC
0.00-0.05 m

pH(H2O) 1.00 0.00 0.98** 0.41* 0.53* 0.36 -0.95** -0.88** 0.50* 0.49* -0.09 0.83** 0.49
P 1.00 0.12 -0.28 0.84** 0.76** -0.01 0.29 0.82** 0.83** 0.93** 0.47 0.80
K 1.00 0.27 0.61** 0.49* -0.97** -0.86** 0.60** 0.59** 0.01 0.89** 0.55
Na 1.00 -0.06 -0.45* -0.31 -0.23 -0.19 -0.20 -0.32 -0.05 -0.04
Ca2+ 1.00 0.88** -0.47* -0.20 0.98** 0.98** 0.78** 0.84** 0.97
Mg2+ 1.00 -0.33 -0.12 0.95** 0.95** 0.79** 0.76** 0.89
Al3+ 1.00 0.92** -0.45 -0.44* 0.16 -0.82** -0.37
H+Al 1.00 -0.20 -0.18 0.44* -0.68** -0.11
SB 1.00 0.99** 0.79** 0.85** 0.97
t 1.00 0.80** 0.84** 0.97
T 1.00 0.35 0.82
V 1.00 0.77
TOC 1.00

0.05-0.10 m
pH(H2O) 1.00 0.68** 0.79** 0.34 0.75** 0.92** -0.88** -0.94** 0.88** 0.86** -0.04 0.96** -0.07
P 1.00 0.31 0.67** 0.40* 0.71** -0.39 -0.50* 0.55* 0.55* 0.10 0.56* -0.68
K 1.00 0.31 0.60** 0.81** -0.84** -0.91** 0.74** 0.73** -0.21 0.87** 0.11
Na 1.00 0.24 0.65** 0.02 -0.19 0.43* 0.44* 0.36 0.31 -0.37
Ca2+ 1.00 0.74** -0.53* -0.63** 0.96** 0.96** 0.51* 0.85** 0.07
Mg2+ 1.00 -0.69** -0.83** 0.90** 0.90** 0.15 0.91** -0.69
Al3+ 1.00 0.97** -0.64** -0.62** 0.44* -0.86** -0.05
H+Al 1.00 -0.76** -0.75** 0.30 -0.94** 0.02
SB 1.00 0.99** 0.39 0.94** 0.01
t 1.00 0.41* 0.93** 0.01
T 1.00 0.05 0.04
V 1.00 0.00
TOC 1.00

0.10-0.30 m
pH(H2O) 1.00 0.67** 0.82** -0.62** 0.51* -0.11 -0.74** -0.79** 0.49* 0.44* -0.22 0.90** 0.12
P 1.00 0.29 0.00 0.88** -0.05 -0.19 -0.18 0.84** 0.80** 0.49* 0.66** 0.67
K 1.00 -0.84** 0.00 -0.17 -0.99** -0.86** 0.00 -0.06 -0.65** 0.66** 0.07
Na 1.00 0.11 0.21 0.89** 0.96** 0.12 0.17 0.80** -0.63** 0.26
Ca2+ 1.00 0.22 0.09 -0.11 0.99** 0.99** 0.66** 0.68** 0.45
Mg2+ 1.00 0.19 0.10 0.36 0.37 0.34 0.13 0.10
Al3+ 1.00 0.86** 0.10 0.16 0.72** -0.60** -0.05
H+Al 1.00 -0.11 -0.05 0.67** -0.80** 0.25
SB 1.00 0.99** 0.67** 0.68** 0.45
t 1.00 0.71** 0.64** 0.44
T 1.00 -0.09 0.52
V 1.00 0.11
TOC 1.00

Numbers in bold refer to correlation coefficients with moduli greater than 0.70; * and **: significant at 5 and 1 %, respectively. t: CEC, T: CEC at pH 
7.0, SB: sum of bases, V: bases saturation, and TOC: total organic carbon.

Interpretation of the Pearson correlation coefficients suggests that TOC contents positively 
influenced other fertility properties, such as available P, exchangeable Ca2+ and Mg2+, 
SB, CEC, CEC at pH 7.0, and V in the 0.00-0.05 m layer. The increase in TOC contents can 
lead to greater availability of P in tropical soils (Souza et al., 2006). The organic matter 
in the soil and its fractions is responsible for generating much of the negative electrical 
charges in tropical soils, thus affecting the CEC and related properties (Dobbs et al., 2008). 
No correlation was observed between TOC contents and other fertility properties in the 
two other depths sampled. It is probable that in the 0.05-0.10 and 0.10-0.30 m layers, 
the lack of a strong correlation between the TOC contents and the fertility properties is 
linked to reduced influence of the management systems.
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The PCA was used to group similar treatments and to obtain a more comprehensive 
analysis of the data. The fertility properties discussed above were used for this purpose. 
Lyra et al. (2010) commented that through PCA, it is possible to detect anomalous 
samples, relationships between variables, and groups of samples with similar properties. 
The table 3 shows the eigenvalues for each of the depths evaluated. The table 4 shows 
the eigenvectors for the first two principal components, which allows visualization of the 
correlation of each component variable.

The first two principal components explained over 70 % of the variance in the data in 
the three layers studied. However, the cumulative percentage of variance explained by 
the first two principal components was greater on the surface than in the subsurface: 
90.7 % in the 0.00-0.05 m layer, 79.8 % in the 0.05-0.10 m layer, and 83.1 % in the 
0.10-0.30 m layer. It is possible that this decrease in the explanatory potential of PCA 
regarding variation in the data with depth is linked to the fact that the properties analyzed 
are affected by soil management systems and/or cover crops (DeMaria et al., 1999; 
Ciotta et al., 2002; Schlindwein and Anghinoni, 2002; Santos et al., 2008; Costa et al., 
2009; Souza et al., 2012; Vieira et al., 2013), and this effect is more intense in the upper 
layer of the soil profile. Typically, in deeper layers, the effects of management and/or cover 
crop systems are smaller, and it is possible that pedogenetic properties are of greater 
intensity, for example, the texture and mineralogy of the soil, leading to less explanatory 
power through chemical properties sensitive to changes in land use and occupation.

The eigenvectors are values that represent the weight of each property in each principal 
component and range from -1 to +1 (Santi et al., 2012). Although authors such as Coelho 
(2003) and Santi et al. (2012) recommend classification of eigenvectors with moduli 
higher than 0.50 as highly significant, in the present study it was observed that the use 
of values lower than 0.70 complicated interpretation of the results, since many properties 
had eigenvector values between 0.50 and 0.69 for the first two principal components. 
Therefore, properties that had eigenvectors with values greater than or equal to 0.70 
were classified as highly significant.

The percentage of variance explained by the first principal component when analyzing 
the data for the 0.00-0.05 m layer was 60.7 %, while the second principal component 
explained 30.0 % of the variance. The eigenvectors determined showed that the first 
principal component strongly correlated with the following soil properties: available P 
and K, Ca2+ and Mg2+, t, SOM, SB, and V. All values were negative, and the SB had the 
score closest to -1 (-0.98). The second principal component strongly correlated with pH, 
Al3+, H+Al, and T. For this component, the score of the pH was positive, while those of the 
Al3+, H+Al, and T were negative. The H+Al was the property with the greatest influence 
on the second principal component, with a score of -0.88.

Table 3. Eigenvalues and percentage of variance explained by the first two principal components related to fertility properties at 
the depths of 0.00-0.05, 0.05-0.10, and 0.10-0.30 m in a Rhodic Ferralsol with vegetable crops under different soil management 
systems and cover crops
Principal component Eigenvalue % of total variance Cumulative eigenvalue % of cumulative variance

0.00-0.05 m
1 7.9 60.7 7.9 60.7
2 3.9 30.0 11.8 90.8

0.05-0.10 m
1 8.2 62.9 8.2 62.9
2 2.2 16.9 10.4 79.8

0.10-0.30 m
1 5.7 43.8 5.7 43.8
2 5.1 39.3 10.8 83.1
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In the 0.05-0.10 m layer, the first principal component explained 62.9 % and the second, 
16.9 %. The first principal component has a strong correlation with pH, K, Ca2+ and Mg2+, 
SB, t, Al3+, H+Al, and V. The pH, K, Ca2+ and Mg2+, SB, t, and V had positive scores, whereas 
the Al3+ and H+Al had negative scores. The V had the highest score (0.99). The second 
principal component had strong correlations with the T, and its score was negative (-0.79).

In PCA referring to the 0.05-0.10 m layer, there was, additionally, a low correlation between 
the first two principal components and the SOM levels, demonstrating the low capacity 
of these components in explaining the behavior of this property. Factor analysis shows 
that the SOM content is strongly correlated with only the third major component (-0.76), 

Table 4. Correlations between the properties evaluated and the first two principal components 
calculated for the data referring to the 0.00-0.05, 0.05-0.10, and 0.10-0.30 m layers in a Rhodic 
Ferralsol with vegetable crops under different soil management systems and cover crops
Property Principal component 1 Principal component 2

0.00-0.05 m
pH(H2O) -0.67 0.73
P -0.71 -0.63
K -0.75 0.64
Na 0.08 0.53
Ca2+ -0.97 -0.18
Mg2+ -0.90 -0.32
Al3+ 0.63 -0.75
H+Al 0.39 -0.88
SB -0.98 -0.21
t -0.97 -0.23
T -0.65 -0.74
V -0.93 0.30
SOM -0.94 -0.21

0.05-0.10 m
pH(H2O) 0.97 0.12
P 0.65 -0.45
K 0.85 0.34
Na 0.45 -0.67
Ca2+ 0.84 -0.18
Mg2+ 0.96 -0.14
Al3+ -0.81 -0.55
H+Al -0.91 -0.38
SB 0.95 -0.16
t 0.94 -0.18
T 0.10 -0.79
V 0.99 0.12
SOM -0.08 0.47

0.010-0.30 m
pH(H2O) -0.96 -0.08
P -0.71 0.60
K -0.79 -0.54
Na 0.67 0.69
Ca2+ -0.60 0.77
Mg2+ -0.00 0.38
Al3+ 0.73 0.62
H+Al 0.81 0.53
SB -0.60 0.78
t -0.54 0.82
T 0.16 0.99
V -0.97 0.08
SOM -0.24 0.55

Numbers in bold refer to correlation coefficients with moduli greater than 0.70. t: CEC, T: CEC at pH 7.0, SB: sum 
of bases, V: bases saturation, and SOM: soil organic matter.
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also indicating the low capacity of the first two components to explain the behavior of 
this property at the depth evaluated. It is also noteworthy that in most cases only the 
first two principal components in PCA are used; they are considered sufficient to explain 
the data and facilitate interpretation since they generate a two-dimensional graph 
(Gomes et al., 2004). Lima et al. (2016) analyzed data from this same experiment and 
found low capacity of the main operations at this depth, such as incorporation of crop 
residues and cover crops, to positively influence the increase in SOM contents, perhaps 
due to the priming effect caused by the intense supply of particulate organic carbon, 
fertilizers, and corrective agents, especially in systems with soil tillage.

The first principal component explained 43.8 % of the data variance in the 0.10-0.30 m 
layer, while the second principal component explained 39.3 %. The first principal component 
correlated strongly with the pH, P and K, and Al3+, H+Al, and V. The eigenvectors exhibited 
positive scores for the Al3+ and H+Al and negative scores for pH, P and K, and V. The largest 
factor loading was observed for the V (-0.97). The second principal component, in turn, 
showed strong positive correlation with the Ca2+, SB, t, and T. The highest score was 
assigned to E (0.98).

The Na did not show strong correlations with the first two principal components in the 
three layers analyzed, which is probably related to the low potential of tillage and cover 
crops to influence it. In fact, several studies (DeMaria et al., 1999; Ciotta et al., 2002; 
Schlindwein and Anghinoni, 2002; Santos et al., 2008; Costa et al., 2009; Souza et al., 
2012; Vieira et al., 2013) reported no change in Na levels according to the use of soil 
management systems and cover crops.

Grouping of the soil management systems and the cover crops provided by PCA can be 
found in figure 1. Better grouping of similar management systems in the 0.00-0.05 and 
0.10-0.30 m layers can be inferred from joint analysis of the results. In the 0.05-0.10 m 
layer, it is clear that the effect of RT was more intense than the effects of CT and NT. 
This fact is probably associated with the subsurface incorporation of cover crop plant 
residues and fertilizers by the harrowing. Lima et al. (2016) evaluated the influence of 
management systems and cover crops used in this experiment on SOM particle size 
fractions and they reported the influence of this process on increasing particulate organic 
C, thus reinforcing the influence of RT on the 0.05-0.10 m layer.

In the 0.00-0.05 m layer, a clear segregation was observed between treatments with 
similar soil management systems (Figure 1a). The position of the NT with corn alone and 
the intercropped NT treatments in the fourth quadrant, below the intersection of the 
two axes, largely reflects the higher acidity of the treatments without soil disturbance. 
The position of the RT with corn alone and the intercropped RT treatments to the left 
of the intersection between the axes reflects the higher fertility of soils subjected to 
reduced soil tillage. Furthermore, in relation to RT, the position of the intercropped RT 
in the second quadrant and the RT with corn alone in the third quadrant reflects the 
higher basicity of the treatment using corn intercropped with velvet bean as a cover 
crop when incorporating the crop residues, a fact not observed by parametric analysis 
and for other management systems when using PCA. The position of the CT with corn 
alone and intercropped CT treatments indicates that they had fertility properties similar 
to treatments that used NT as the soil management system, where the most striking 
difference was soil acidity, which was lower in the former than in the latter.

A different pattern related to the management systems was observed for the result of 
PCA in the 0.05-0.10 m layer (Figure 1b). In this level, it is possible to identify a clear 
segregation between the treatments that used RT as the soil management system. 
Reduced tillage with corn alone and intercropped RT had clearly higher fertility in this 
layer, providing higher levels of most of the nutrients evaluated, as well as the attributes 
derived from the nutrients and lower acidity than the treatments that used NT and CT. 
As previously discussed, it is possible that these results were strongly influenced by 
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Figure 1. Grouping of the management systems and cover crops indicated by Principal Component 
Analysis based on the fertility properties of a Rhodic Ferralsol after 5 years of adoption of 
conservation soil management systems adoption in the 0.00-0.05 m layer (a), in the 0.05-0.10 m 
layer (b), and in the 0.10-0.30 m layer (c). NT1, RT1, and CT1: no-tillage, reduced tillage, and 
conventional tillage, respectively, with corn alone; NT2, RT2, and CT2: no-tillage, reduced tillage, 
and conventional tillage, respectively, with corn intercropped with gray velvet bean.
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subsurface incorporation of cover crop residues, fertilizers, and corrective agents. Alcântara 
et al. (2000) found that the incorporation of cover crop plant residues accelerates their 
decomposition. This may accelerate the release of nutrients and allow higher soil fertility 
to be maintained in short and/or medium term experiments. Results in Bayer et al. 
(2001) and Zhang et al. (2016) under different soil and climate conditions suggest that 
NT reaches its full capacity to improve qualitative aspects of the soil at around ten years 
after its implementation. It should be noted that intercropping corn and velvet bean 
in RT can reduce the effects of soil acidity. Moreover, NT and CT showed similar soil 
properties when subjected to intercropping, whereas PCA suggests that NT with corn 
alone provides a higher E value than the intercropped CT and NT treatments and the CT 
with corn alone treatment.

Better distribution of the treatments in accordance with the management systems could 
also be observed in PCA in the 0.10-0.30 m layer. Therefore, although the greatest effects 
of the management systems on chemical properties of the soil are normally observed 
in the surface layers when classical statistics are used, as previously discussed, PCA 
was able to distinguish similar treatments in the 0.10-0.30 m layer, suggesting that this 
method is more robust in detection of differences between treatments at greater depths. 
Again, RT was the management system that had the highest soil fertility, with a good 
distinction between RT with corn alone and intercropped RT, which maintained higher 
levels of Ca2+, SB, t, and T, properties that were strongly correlated with the second 
principal component. The NT and CT systems, in turn, showed higher acidity than the 
RT system. Principal component analysis also indicated greater fertility of NT than CT 
at this depth.

CONCLUSIONS
The RT system showed the highest soil fertility among the systems evaluated, probably 
due to accelerated decomposition of cover crop plant residues, as well as the subsurface 
incorporation of fertilizers and lime.

The most significant effects of the management systems were found in the 0.00-0.05 m layer.

The NT system had the greatest effect on soil acidity components, especially in the 
0.00-0.05 m layer.

Principal component analysis allowed patterns to be detected that were not observed 
by the Anova and the Scott-Knott test, especially in the 0.05-0.10 m and 0.10-0.30 m 
layers, demonstrating the robustness of this method and the possibility of its use for 
data analysis in soil science.
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