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A B S T R A C T
Determining uniformity coefficients of sprinkle irrigation systems, in general, depends on 
field trials, which require time and financial resources. One alternative to reduce time and 
expense is the use of simulations. The objective of this study was to develop an artificial 
neural network (ANN) to simulate sprinkler precipitation, using the values ​​of operating 
pressure, wind speed, wind direction and sprinkler nozzle diameter as the input parameters. 
Field trials were performed with one sprinkler operating in a grid of 16 x 16, collectors with 
spacing of 1.5 m and different combinations of nozzles, pressures, and wind conditions. 
The ANN model showed good results in the simulation of precipitation, with Spearman’s 
correlation coefficient (rs) ranging from 0.92 to 0.97 and Willmott agreement index (d) 
from 0.950 to 0.991, between the observed and simulated values for ten analysed trials. The 
ANN model shows promise in the simulation of precipitation in sprinkle irrigation systems.

Modelo em redes neurais artificiais para a simulação
da precipitação na irrigação por aspersão
R E S U M O
A determinação dos coeficientes de uniformidade de distribuição da água dos sistemas de 
irrigação por aspersão depende, em geral, de ensaios em campo que envolvem tempo e 
recursos financeiros. Uma alternativa para reduzir custo e tempo é a utilização de simulações. 
Objetivou-se, com este trabalho, o desenvolvimento de um modelo em redes neurais 
artificiais (RNA) para simular a precipitação de um aspersor cujos parâmetros de entrada 
são os valores de pressão de operação, velocidade do vento, direção do vento e diâmetro 
do bocal do aspersor. Ensaios foram feitos em campo com um aspersor operando em uma 
malha de 16 x 16 coletores com espaçamento de 1,5 m e diferentes combinações de bocais, 
pressões e condições de vento. O modelo RNA apresentou bons resultados na simulação da 
precipitação com correlação de Spearman (rs) entre os dados obtidos em ensaio de campo 
e os dados simulados, apresentando valores entre 0,92 e 0,97 e índice de concordância de 
Willmott (d) entre 0,950 e 0,991 para dez ensaios analisados. O modelo RNA mostrou-se 
promissor na simulação da precipitação em sistemas de irrigação por aspersão.
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Introduction

In order to ensure and improve crop yield, the technique 
of irrigation has been used as a complement or a substitute of 
natural rainfall, so as to guarantee that the water demand is met.

Among the existing irrigation systems, sprinkle irrigation 
is one of the most used, since it can adapt to the diversities of 
soil, topography, crop and the size of the area to be cultivated, 
which allows a good control of the applied water depth and 
consequently of its efficiency. 

In order to reduce costs and the waste of water and time in 
the evaluation of sprinkle irrigation systems, simulations can 
be used to predict the behavior and the results of irrigation. 

Many researchers have studied the importance of 
simulations, such as Faria et al. (2012), who evaluated 
the applicability of a semiempirical model of Richards & 
Weatherhead for trials under different wind conditions, and 
Oliveira et al. (2009), who evaluated the hypothesis of the 
existence of a linear relationship between the radius of throw 
of a gun type sprinkler and wind speed.

In the context of the simulations, it is possible to use 
artificial neural networks (ANNs), which are computational 
models inspired in the neural structure of intelligent organisms, 
neurons and synapses, that acquire knowledge through 
experience. The most important property of ANNs is the 
ability to learn through examples, by adjusting the weights of 
the connections between neurons.

ANNs can be applied in many areas, like soil digital 
mapping based on soil-landscape relationships (Arruda et al., 
2013), classification of degradation levels of pastures (Chagas 
et al., 2009), rainfall erosivity (Moreira et al., 2006), estimation 
of reference evapotranspiration through air temperature data 
(Alves Sobrinho et al., 2011), modeling of soil penetration 
resistance (Santos et al., 2012) or even identification and 
classification of soybean cultivars by planting region (Galão 
et al., 2011).

In this context, this study proposed the development of a 
multilayer perceptron (MLP) neural network model for the 
simulation of the precipitation of a sprinkler.

Material and Methods

The ANN model was trained and validated using results 
from field trials at the Ouro Verde Farm, located in the 
municipality of Medianeira-PR, Brazil (25° 12’ 19.26” S; 
54° 3’ 27.93” W; 360 m), in order to characterize the spatial 
distribution of water applied by a sprinkler (Pingo Giro 
Completo – Fabrimar®), operating with different combinations 
of nozzles, operating pressure, wind speed and wind direction.

The sprinkler was installed at 1.25 m from the soil surface 
with water nozzle at a vertical distance of 0.60 m from the 
collectors. In total, 256 pluviometers were installed from the 
center of the irrigated area (24 x 24 m), at a regular spacing 
of 1.5 x 1.5 m in both coordinate directions. Figure 1 shows 
the coordinate system (X,Y) adopted in the trials and the 
notation of the angle F, which describes the predominant wind 
direction in relation to the lines of the water collectors used in 
the field trials. Two kits for water distribution uniformity trials 
(Fabrimar®) were used, which consisted of: 300 pluviometers 

made of engineering plastic for water collection; 10 graduated 
cylinders made of transparent thermoplastic, with scale of 0.5 
mm, from 0 to 15 mm; 300 bars made of structural aluminum, 
for the support and fixation of the collectors on the ground.

The operating pressure of each test was controlled using 
a vertical, glycerin-filled Bourdon tube pressure gauge, with 
scale of up to 981 kPa, attached to the base of the sprinkler and 
another one with scale of up to 686 kPa at the beginning of the 
mainline. The pressure was regulated through a gate valve and 
the operation time controlled using a digital stopwatch (Casio®)

Wind speed and wind direction were automatically 
recorded by a weather station (Davis Vantage Vue), at regular 
intervals of 5 min, at 2 m from the soil and at a distance of 25 
m from the irrigated area. Precipitation measurements were 
recorded in worksheets, in the form a 16 x 16 matrix, referred 
to as “A”. 

Nine combinations of nozzles (2.6 x 2.4; 2.8 x 2.4; 3.0 x 
2.6; 3.2 x 2.6; 3.4 x 2.6; 3.6 x 2.8; 3.8 x 2.8; 4.0 x 2.8 and 4.0 
x 3.2 mm) were tested at the four pressure values suggested 
by the manufacturer (196, 245, 294 and 343 kPa). Since the 
number of samples necessary for the training of a neural 
network is unknown (Másson, 1990) and the possibility of 
success increases as the number of samples increases, three 
trials were performed for each combination. However, these 
trials were not three replicates, because wind speed and wind 
direction changed according to the field conditions during 
each trial. Thus, 108 trials were conducted, each one with 
duration of 2 h.

The body of the artificial neuron consisted of a sum 
function (linear combiner Σ), represented by the weighted sum 
of the values received by the neuron through the synapses and 
summed to the bias value that is externally applied and has the 
effect of increasing or decreasing the output value (vk) of the 
body of the neuron (Haykin, 2001). This value generated in the 
body of the neuron (vk) passes through an activation function 
φ(.), which restricts the output amplitude of the neuron and 
generates an output value (yk), which represents the net output 
value of the neuron and will be transmitted to the subsequent 
neuron, simulating the flow of impulses in the brain.

The neuron can be mathematically described by Eqs. 1 and 
2 (Haykin, 2001):

Figure 1. Scheme of the collection grid and wind direction 
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where:
vk 	 - induced local field of the neuron;
yk 	 - output signal of the neuron k;
x0, x1, x2, …, xm - input signals;
wk1, wk2, wk3, …, wkm - synaptic weights of the neuron k;
bk 	 - bias applied to the neuron k; and
φ(.) 	 - activation function.

A multilayer perception neural network was developed 
and validated, trained with the backpropagation algorithm, a 
feedforward function and a sigmoid-type activation function, 
φ(.), defined by Eq. 3 (Haykin, 2001):

In this study, the agreement index (d) was used to compare 
the values predicted by the model with the observed values. 
According to Willmott (1981), this index varies from 0 (no 
agreement) to 1 (perfect agreement) and can be used to 
measure the accuracy between two models, as shown in Eq. 4.
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where a is the parameter defining the slope of the function.
In this study, the dataset of the 108 trials was normalized in 

the interval from 0 to 1, according to Chagas et al. (2010), and 
randomly divided into subsets: training subset data (98 trials) 
and validation subset data (10 trials); the latter was used for the 
discussion of the results of the model. As in Santos et al. (2012), 
the strategy of cross-validation was employed in this study, with 
20% of the training data used to estimate the performance of 
the ANN and determine the moment to interrupt the training, 
in order to avoid excessive training. 

For the parametrization, creation, training and validation 
of the topologies of the neural network in this study, since 
31148 topologies of candidate networks were evaluated and 
the one with the best result was selected, four computational 
algorithms were developed and executed by the software for 
neural network simulation SNNS (Zell et al., 1996), in order 
to test networks with, respectively, one, two, three and four 
hidden layers.

The ten randomly selected trials for the validation subset 
were 13, 15, 41, 55, 56, 85, 88, 89, 93 and 100. Precipitation 
measurements and field conditions (combination of nozzles, 
operating pressure, wind speed and wind direction) in which 
these trials were performed are described below.

Table 1. Tests of adherence to normal distribution for the validation subset of precipitation data
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where:
Ei 	 - values predicted by the model;
Oi 	 - observed values; and
O 	 - mean of the observed values.

Results and Discussion

The ANN with the best results was composed of one input 
layer with 4 neurons, one hidden layer with 280 neurons and 
the output layer with 256 neurons. The fact that the ANN 
with the best results has only one hidden layer agrees with 
the results observed by Soares et al. (2014), who estimated 
soil water retention using ANN, and Zanetti et al. (2008), 
who estimated reference evapotranspiration using ANNs and 
concluded that only one hidden layer is sufficient to represent 
the non-linear relationship between climatic elements and 
reference evapotranspiration. 

According to the results of the analysis and the inferences 
on data distribution (Table 1), in the normality tests of 
Kolmogorov-Smirnov and Shapiro-Wilk for the ten trails 
used in the validation of the ANN model, considering 0.05 
significance (α = 0.05), the hypothesis that precipitation data 
follow normal distribution was rejected. The non-normality 
of the data is a consequence of the high frequency of values 
equal to zero, observed in the field trials.

At 0.05 level of significance, the Levene test accepts the 
hypothesis of homogeneity between observed and simulated 
data with p-value > 0.05 for seven of the ten trials (Table 2). 
According to the test of Wilcoxon-Mann-Whitney (a = 0.05 ) 
(Table 2), used to indicate whether the position measurements 
of the tested dataset come from similar populations, in eight 
of the ten trials the observed and simulated data come from 
similar populations (or the same population), reinforcing the 
hypothesis that the ANN expressed with good precision the 
characteristics of the training samples.

(1)

(2)

(3)

(4)
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Spearman’s correlation test was performed for the 10 
datasets used for the validation of the ANN model, which were 
not part of the training step and the parameter estimation. 
The rs correlation coefficients for the 10 trials used for model 

validation are shown in Table 3. A strong correlation was 
observed for all field trials, with rs ranging from 0.929 to 0.976, 
an indication that the ANN model predicted values very close 
to those observed in the field trials. 

The sprinkler precipitation observed in the field trial and 
the respective values simulated by the neural network for the 
Trial nº 93 are shown in Figures 2A and 2B. The best results 
were observed for the ANN with duration of 2 h, nozzle 
combination of 4.0 x 2.8 mm, operating pressure of 196 kPa, 
with mean wind speed of 0.74 m s-1 in the direction 325º.

The correlations between the observed and ANN-simulated 
data, with the respective Spearman’s coefficients (rs) measuring 
correlation strength, are shown in Figures 3 to 5. The dispersion 
between observed and simulated values for the Trial 93 is 
shown in Figure 3A. Strong correlation (rs = 0.976) was 
observed between the two datasets (Table 3), which indicates 
good performance of the ANN model in the prediction of these 
precipitation values.

Table 2. Tests of homoscedasticity and population 
similarity between observed data and the values simulated 
by the ANN model

*Rejected at 0.05 of significance

Table 3. Values of Spearman’s correlation coefficient (rs) and Willmott agreement index (d) between precipitation values 
observed and simulated by the neural network for the 10 field trials used in the model validation

Figure 2. Sprinkler precipitation for the best correlation coefficient, rs = 0.976, in the Trial 93: observed data (A) and 
ANN-simulated data (B)
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Figure 3. Correlation between observed and simulated 
precipitation for the operating pressure of 196 kPa, in the 
Trials 93 (A), 85 (B), 41(C), 89 (D) and 13 (E)

rs - correlation coefficient;  b - nozzle combination (mm x mm); v - wind speed 
(m s-1); d - wind direction (degree)
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Figure 4. Correlation between observed and simulated 
precipitation for two ANN validation trials with duration of 2 h 
and operating pressure of 294 kPa: Trial 15 (A) and Trial 55 (B)

rs - correlation coefficient;  b - nozzle combination (mm x mm); v - wind speed 
(m s-1); d - wind direction (degree)

Observed precipitation (mm)

Figure 5. Correlation between observed and simulated 
precipitation for three ANN validation trials with duration 
of 2 h and operating pressure of 343 kPa: Trial 56 (A), Trial 
100 (B) and Trial 88 (C)

rs - correlation coefficient;  b - nozzle combination (mm x mm); v - wind speed 
(m s-1); d - wind direction (degree)

The correlations indicate that, although the ANN was more 
precise in the prediction of the Trial 93 with operating pressure 
of 196 kPa, it also showed good fit for the other pressures. 

Conclusions

1. The artificial neural network (ANN) developed to 
simulate the precipitation of the sprinkler was a multilayer 
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perceptron (MLP) model and the best topology was composed 
of 4 neurons in the input layer, only one hidden layer with 280 
neurons and output layer with 256 neurons.

2. For the ten field trials used in its validation, the ANN 
model showed satisfactory performance in the prediction of 
sprinkler precipitation, with correlation coefficient, rs, ranging 
from 0.929 to 0.976 and Willmott agreement index, d, from 
0.950 to 0.991.

3. The ANN topology selected and tested in this study 
showed good performance in the prediction of sprinkler 
precipitation and the potential of these models for irrigation 
simulations.

4. The satisfactory performance was partially due to the 
high capacity of adaptation of the backpropagation learning 
algorithm.
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