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ABSTRACT

Determining uniformity coefficients of sprinkle irrigation systems, in general, depends on
field trials, which require time and financial resources. One alternative to reduce time and
expense is the use of simulations. The objective of this study was to develop an artificial
neural network (ANN) to simulate sprinkler precipitation, using the values of operating
pressure, wind speed, wind direction and sprinkler nozzle diameter as the input parameters.
Field trials were performed with one sprinkler operating in a grid of 16 x 16, collectors with
spacing of 1.5 m and different combinations of nozzles, pressures, and wind conditions.
The ANN model showed good results in the simulation of precipitation, with Spearman’s
correlation coefficient (r) ranging from 0.92 to 0.97 and Willmott agreement index (d)
from 0.950 to 0.991, between the observed and simulated values for ten analysed trials. The
ANN model shows promise in the simulation of precipitation in sprinkle irrigation systems.

Palavras-chave:

aspersor

uniformidade de distribuigdo de agua
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Modelo em redes neurais artificiais para a simulacao
da precipita¢do na irrigagdo por aspersao

RESUMO

A determinagéo dos coeficientes de uniformidade de distribui¢do da dgua dos sistemas de
irrigacdo por aspersdo depende, em geral, de ensaios em campo que envolvem tempo e
recursos financeiros. Uma alternativa para reduzir custo e tempo é a utilizagdo de simulagdes.
Objetivou-se, com este trabalho, o desenvolvimento de um modelo em redes neurais
artificiais (RNA) para simular a precipitaciao de um aspersor cujos pardmetros de entrada
sao os valores de pressdo de operacéo, velocidade do vento, dire¢do do vento e didmetro
do bocal do aspersor. Ensaios foram feitos em campo com um aspersor operando em uma
malha de 16 x 16 coletores com espagamento de 1,5 m e diferentes combinag¢des de bocais,
pressdes e condi¢oes de vento. O modelo RNA apresentou bons resultados na simulagdo da
precipitagdo com correlagao de Spearman (r ) entre os dados obtidos em ensaio de campo
e os dados simulados, apresentando valores entre 0,92 e 0,97 e indice de concordancia de
Willmott (d) entre 0,950 e 0,991 para dez ensaios analisados. O modelo RNA mostrou-se
promissor na simulacio da precipitagdo em sistemas de irrigagdo por aspersio.
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INTRODUCTION

In order to ensure and improve crop yield, the technique
of irrigation has been used as a complement or a substitute of
natural rainfall, so as to guarantee that the water demand is met.

Among the existing irrigation systems, sprinkle irrigation
is one of the most used, since it can adapt to the diversities of
soil, topography, crop and the size of the area to be cultivated,
which allows a good control of the applied water depth and
consequently of its efficiency.

In order to reduce costs and the waste of water and time in
the evaluation of sprinkle irrigation systems, simulations can
be used to predict the behavior and the results of irrigation.

Many researchers have studied the importance of
simulations, such as Faria et al. (2012), who evaluated
the applicability of a semiempirical model of Richards &
Weatherhead for trials under different wind conditions, and
Oliveira et al. (2009), who evaluated the hypothesis of the
existence of a linear relationship between the radius of throw
of a gun type sprinkler and wind speed.

In the context of the simulations, it is possible to use
artificial neural networks (ANNSs), which are computational
models inspired in the neural structure of intelligent organisms,
neurons and synapses, that acquire knowledge through
experience. The most important property of ANNs is the
ability to learn through examples, by adjusting the weights of
the connections between neurons.

ANNs can be applied in many areas, like soil digital
mapping based on soil-landscape relationships (Arruda et al.,
2013), classification of degradation levels of pastures (Chagas
etal., 2009), rainfall erosivity (Moreira et al., 2006), estimation
of reference evapotranspiration through air temperature data
(Alves Sobrinho et al., 2011), modeling of soil penetration
resistance (Santos et al., 2012) or even identification and
classification of soybean cultivars by planting region (Galdo
et al,, 2011).

In this context, this study proposed the development of a
multilayer perceptron (MLP) neural network model for the
simulation of the precipitation of a sprinkler.

MATERIAL AND METHODS

The ANN model was trained and validated using results
from field trials at the Ouro Verde Farm, located in the
municipality of Medianeira-PR, Brazil (25° 12° 19.26” S;
54° 3’ 27.93” W; 360 m), in order to characterize the spatial
distribution of water applied by a sprinkler (Pingo Giro
Completo - Fabrimar’), operating with different combinations
of nozzles, operating pressure, wind speed and wind direction.

The sprinkler was installed at 1.25 m from the soil surface
with water nozzle at a vertical distance of 0.60 m from the
collectors. In total, 256 pluviometers were installed from the
center of the irrigated area (24 x 24 m), at a regular spacing
of 1.5 x 1.5 m in both coordinate directions. Figure 1 shows
the coordinate system (X,Y) adopted in the trials and the
notation of the angle ®, which describes the predominant wind
direction in relation to the lines of the water collectors used in
the field trials. Two kits for water distribution uniformity trials
(Fabrimar’) were used, which consisted of: 300 pluviometers
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Figure 1. Scheme of the collection grid and wind direction
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made of engineering plastic for water collection; 10 graduated
cylinders made of transparent thermoplastic, with scale of 0.5
mm, from 0 to 15 mm; 300 bars made of structural aluminum,
for the support and fixation of the collectors on the ground.

The operating pressure of each test was controlled using
a vertical, glycerin-filled Bourdon tube pressure gauge, with
scale of up to 981 kPa, attached to the base of the sprinkler and
another one with scale of up to 686 kPa at the beginning of the
mainline. The pressure was regulated through a gate valve and
the operation time controlled using a digital stopwatch (Casio’)

Wind speed and wind direction were automatically
recorded by a weather station (Davis Vantage Vue), at regular
intervals of 5 min, at 2 m from the soil and at a distance of 25
m from the irrigated area. Precipitation measurements were
recorded in worksheets, in the form a 16 x 16 matrix, referred
to as “A”.

Nine combinations of nozzles (2.6 x 2.4; 2.8 x 2.4; 3.0 x
2.6;3.2x2.6;3.4x2.6;3.6x2.8;3.8x2.8;4.0x2.8and 4.0
x 3.2 mm) were tested at the four pressure values suggested
by the manufacturer (196, 245, 294 and 343 kPa). Since the
number of samples necessary for the training of a neural
network is unknown (Mdsson, 1990) and the possibility of
success increases as the number of samples increases, three
trials were performed for each combination. However, these
trials were not three replicates, because wind speed and wind
direction changed according to the field conditions during
each trial. Thus, 108 trials were conducted, each one with
duration of 2 h.

The body of the artificial neuron consisted of a sum
function (linear combiner X), represented by the weighted sum
of the values received by the neuron through the synapses and
summed to the bias value that is externally applied and has the
effect of increasing or decreasing the output value (v,) of the
body of the neuron (Haykin, 2001). This value generated in the
body of the neuron (v,) passes through an activation function
¢(.), which restricts the output amplitude of the neuron and
generates an output value (y, ), which represents the net output
value of the neuron and will be transmitted to the subsequent
neuron, simulating the flow of impulses in the brain.

The neuron can be mathematically described by Egs. 1 and
2 (Haykin, 2001):



Vk:zwkj'xj"‘ b, 1)
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and,
Y = (P(Vk ) (2)
where:
v, - induced local field of the neuron;
y, - output signal of the neuron k;

Xy X;» X, +o0s X, - input signals;

Wy Wi W W - Synaptic weights of the neuron k;
b, - bias applied to the neuron k; and
¢(.) - activation function.

e W

A multilayer perception neural network was developed
and validated, trained with the backpropagation algorithm, a
tfeedforward function and a sigmoid-type activation function,
¢(.), defined by Eq. 3 (Haykin, 2001):

1
1+e™

o(v) (3)
where a is the parameter defining the slope of the function.

In this study, the dataset of the 108 trials was normalized in
the interval from 0 to 1, according to Chagas et al. (2010), and
randomly divided into subsets: training subset data (98 trials)
and validation subset data (10 trials); the latter was used for the
discussion of the results of the model. As in Santos et al. (2012),
the strategy of cross-validation was employed in this study, with
20% of the training data used to estimate the performance of
the ANN and determine the moment to interrupt the training,
in order to avoid excessive training.

For the parametrization, creation, training and validation
of the topologies of the neural network in this study, since
31148 topologies of candidate networks were evaluated and
the one with the best result was selected, four computational
algorithms were developed and executed by the software for
neural network simulation SNNS (Zell et al., 1996), in order
to test networks with, respectively, one, two, three and four
hidden layers.

The ten randomly selected trials for the validation subset
were 13, 15, 41, 55, 56, 85, 88, 89, 93 and 100. Precipitation
measurements and field conditions (combination of nozzles,
operating pressure, wind speed and wind direction) in which
these trials were performed are described below.
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In this study, the agreement index (d) was used to compare
the values predicted by the model with the observed values.
According to Willmott (1981), this index varies from 0 (no
agreement) to 1 (perfect agreement) and can be used to
measure the accuracy between two models, as shown in Eq. 4.

Zin:I(Ei -0 )2.
n 2
> ([E-0]+[0, -0 )"

(4)

where:
E, - values predicted by the model;
O, - observed values; and
O - mean of the observed values.

RESULTS AND DISCUSSION

The ANN with the best results was composed of one input
layer with 4 neurons, one hidden layer with 280 neurons and
the output layer with 256 neurons. The fact that the ANN
with the best results has only one hidden layer agrees with
the results observed by Soares et al. (2014), who estimated
soil water retention using ANN, and Zanetti et al. (2008),
who estimated reference evapotranspiration using ANNs and
concluded that only one hidden layer is sufficient to represent
the non-linear relationship between climatic elements and
reference evapotranspiration.

According to the results of the analysis and the inferences
on data distribution (Table 1), in the normality tests of
Kolmogorov-Smirnov and Shapiro-Wilk for the ten trails
used in the validation of the ANN model, considering 0.05
significance (a = 0.05), the hypothesis that precipitation data
follow normal distribution was rejected. The non-normality
of the data is a consequence of the high frequency of values
equal to zero, observed in the field trials.

At 0.05 level of significance, the Levene test accepts the
hypothesis of homogeneity between observed and simulated
data with p-value > 0.05 for seven of the ten trials (Table 2).
According to the test of Wilcoxon-Mann-Whitney (o = 0.05)
(Table 2), used to indicate whether the position measurements
of the tested dataset come from similar populations, in eight
of the ten trials the observed and simulated data come from
similar populations (or the same population), reinforcing the
hypothesis that the ANN expressed with good precision the
characteristics of the training samples.

Table 1. Tests of adherence to normal distribution for the validation subset of precipitation data

Kolmogorov-Smirnov Test

Shapiro-Wilk Test

Statistics p-value Normal Statistics p-value Normal
Trial 56 0.175 3.33 X 10 N 0.855 9.16 X101 N
Trial 15 0.230 3.33 X 10 N 0.782 3.66 X108 N
Trial 13 0.270 3.33X 102 N 0.709 7.68 X102 N
Trial 55 0.155 3.33X 10 N 0.881 2.75X107 N
Trial 100 0.201 3.33X 10 N 0.836 9.35X 10 N
Trial 88 0.190 3.33X 102 N 0.831 5.08 X107 N
Trial 41 0.176 3.33 X 10 N 0.873 8.91 X 10" N
Trial 93 0.215 3.33 X 10 N 0.834 7.33 X107 N
Trial 89 0.232 3.33 X 10 N 0.837 9.89 X 10 N
Trial 85 0.208 3.33 X 10 N 0.837 9.93X 10 N
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Table 2. Tests of homoscedasticity and population
similarity between observed data and the values simulated
by the ANN model

Wilcoxon-Mann-Whitney Test Levene Test

w p-value F p-value
Trial 56 36025 0.050 0.1945 0.659
Trial 15 30225.5 0.121 0.0035 0.953
Trial 13 28634.5 0.011~* 0.2155 0.643
Trial 55 28407.5 0.009* 10.247 0.001*
Trial 100 30547 0.183 89.603 0.003*
Trial 88 31969.5 0.629 0.3833 0.536
Trial 41 32537 0.889 0.2075 0.649
Trial 93 31605 0.478 0.5733 0.449
Trial 89 28674.5 0.014* 3.0639 0.081
Trial 85 32374 0.811 0.8904 0.346

*Rejected at 0.05 of significance

Spearman’s correlation test was performed for the 10
datasets used for the validation of the ANN model, which were
not part of the training step and the parameter estimation.
The r_ correlation coefficients for the 10 trials used for model

validation are shown in Table 3. A strong correlation was
observed for all field trials, with r, ranging from 0.929 to 0.976,
an indication that the ANN model predicted values very close
to those observed in the field trials.

The sprinkler precipitation observed in the field trial and
the respective values simulated by the neural network for the
Trial n° 93 are shown in Figures 2A and 2B. The best results
were observed for the ANN with duration of 2 h, nozzle
combination of 4.0 x 2.8 mm, operating pressure of 196 kPa,
with mean wind speed of 0.74 m s in the direction 325°.

The correlations between the observed and ANN-simulated
data, with the respective Spearman’s coefficients (r ) measuring
correlation strength, are shown in Figures 3 to 5. The dispersion
between observed and simulated values for the Trial 93 is
shown in Figure 3A. Strong correlation (r, = 0.976) was
observed between the two datasets (Table 3), which indicates
good performance of the ANN model in the prediction of these
precipitation values.

Table 3. Values of Spearman’s correlation coefficient (r) and Willmott agreement index (d) between precipitation values
observed and simulated by the neural network for the 10 field trials used in the model validation

Trial N° Nozzle Pressure Wind r d
(mm) (kPa) Speed (m s7) Direction (degree) :
13 28X24 196 0.70 76.50 0.929 0.950
15 2.8X2.4 294 0.18 95.16 0.965 0.985
41 3.2X2.6 196 0.79 116.76 0.965 0.988
55 3.4X2.6 294 0.87 139.26 0.974 0.986
56 3.4X26 343 0.33 245.70 0.956 0.977
85 40X2.8 196 1.00 214.86 0.963 0.989
88 40X2.8 343 1.23 246.60 0.952 0.991
89 40X2.8 196 1.29 94.92 0.951 0.975
93 40X2.8 196 0.75 271.80 0.976 0.988
100 4.0X3.2 343 0.34 152.28 0.967 0.986
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Figure 2. Sprinkler precipitation for the best correlation coefficient, r. = 0.976, in the Trial 93: observed data (A) and

ANN-simulated data (B)
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The correlations indicate that, although the ANN was more
precise in the prediction of the Trial 93 with operating pressure
of 196 kPa, it also showed good fit for the other pressures.

CONCLUSIONS

1. The artificial neural network (ANN) developed to
simulate the precipitation of the sprinkler was a multilayer
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perceptron (MLP) model and the best topology was composed
of 4 neurons in the input layer, only one hidden layer with 280
neurons and output layer with 256 neurons.

2. For the ten field trials used in its validation, the ANN
model showed satisfactory performance in the prediction of
sprinkler precipitation, with correlation coefficient, r, ranging
from 0.929 to 0.976 and Willmott agreement index, d, from
0.950 to 0.991.

3. The ANN topology selected and tested in this study
showed good performance in the prediction of sprinkler
precipitation and the potential of these models for irrigation
simulations.

4. The satisfactory performance was partially due to the
high capacity of adaptation of the backpropagation learning
algorithm.
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