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Western music is predominantly based on the equal temperament with a constant semitone frequency
ratio of 21/12. Although this temperament has been in use since the nineteenth century and in spite
of its high degree of symmetry, various musicians have repeatedly expressed their discomfort with the
harmonicity of certain intervals. Recently it was suggested that this problem can be overcome by introducing
a modified temperament with a constant but slightly increased frequency ratio. In this paper we confirm
this conjecture quantitatively. Using entropy as a measure for harmonicity, we show numerically that the
harmonic optimum is in fact obtained for frequency ratios slightly larger than 21/12. This suggests that the
equal temperament should be replaced by a harmonized stretched temperament as a new standard.
Keywords: music theory, equal temperament, stretched octaves, entropy-based tuning.

A música ocidental é predominantemente baseada no temperamento igual, com uma razão constante
21/12 das frequências de semitom. Embora esse temperamento tenha sido usado desde o século dezenove, e
apesar de seu alto grau de simetria, vários músicos têm repetidamente manifestado o seu desconforto com
a harmonicidade de certos intervalos. Recentemente, foi sugerido que este problema pode ser superado
através da introdução de um temperamento modificado, com uma razão de frequências constante, mas
ligeiramente maior. Neste trabalho confirmamos qualitativamente esta conjectura. Usando a entropia como
uma medida para a harmonicidade, mostramos numericamente que o harmônico ótimo é de fato obtido
para razões de frequências ligeiramente maiores do que 21/12. Isto sugere que o temperamento igual deve
ser substitúıdo por um temperamento harmonicamente estendido, que se transformaria em novo padrão.
Palavras-chave: teoria musica, temperamento igual, oitavas estendidas, afinação baseada na entropia.

1. Introduction

Musical intervals between two tones are perceived
as harmonic if the corresponding frequencies are
related by simple fractional ratios [1]. For example,
the perfect fifth and the perfect fourth corresponds
to the frequency ratios 3

2 and 4
3 . Our ability to

hear and identify such fractional frequency ratios
is related to the fact that the natural spectrum of
musical sounds consists not only of the fundamental
frequency f1 but also involves a large number higher
partials (overtones) at integer multiple frequencies
fn = n f1. Our sense of hearing is capable to detect
matching partials, signaling us the impression of
consonance and harmony. In other words, perceiving

∗Endereço de correspondência: hinrichsen@physik.uni-
wuerzburg.de.

a perfect fifth as consonant does not mean that our
ears like the numerical value 3

2 , it rather reflects the
circumstance that the third partial of the lower tone
coincides with the second of the upper (see Fig. 1).

A musical scale is a periodic system of notes or-
dered by increasing fundamental frequency. The
Western chromatic scale, on which we will focus in
the present work, consists of twelve semitones per
octave. As a musical scale is constructed in repeat-
ing patterns of intervals, it is always exponentially
organized in the frequencies. For example, in the
chromatic scale the frequency doubles from octave to
octave. Aiming for a harmonic perception, musical
scales are tuned in such a way that the fundamental
frequencies capture or at least approximate simple
fractional frequency ratios. However, in setting up
such a tuning scheme one is immediately confronted
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1310-2 Revising the musical equal temperament

Figure 1: Harmonicity of a trichord. Playing a C-Major trichord (C-E-G-C) one generates four series of partials which
are shown above the keyboard at the corresponding positions. Note that neighboring partials have a constant frequency
difference while neighboring keys on the keyboard are characterized by a constant frequency ratio. This explains why the
distance between the partials decreases as we go to the right, demonstrating the mathematical incommensurability of the
exponential scale and the linear partial series. The trichord is perceived as harmonic because various partials match, as
indicated by the arrows. The large green arrows stand for perfect matching due to pure octaves. In the standard equal
temperament, on which this figure is based, there are also various approximate coincidences, as marked by the smaller gray
arrows.

with the problem that the exponential structure of
the scale and the linear organization of the partials
are incommensurable.

The probably most natural example of such a tun-
ing system is the just intonation, where all intervals
are built on simple fractional ratios with respect to a
certain reference key. Music played in this reference
key sounds very harmonic if not even sterile, but
when played in a different key the same piece can be
terribly out of tune. With the increasing complex-
ity of music, however, frequent key changes became
more important. Historically this led to the fascinat-
ing development of so-called temperaments [2], i.e.
tuning systems seeking for a reasonable compromise
between harmonicity and invariance under trans-
position, attempting to reconcile the exponential
structure of the scale with the linear organization
of the partials. This development culminated in the
so-called equal temperament (ET) with a constant
semitone ratio of 21/12. This temperament is per-
fectly invariant under key changes, but except for
the octave all intervals are out of perfect tune. The
ET is the standard temperament of Western music
and has been in use since the beginning of the 19th

century.
Despite the high degree of symmetry, some musi-

cians continue to express their concern about certain
intervals in the ET which exhibit unpleasant beats.
This discontent may have contributed to the revival
of historical temperaments, accompanied by a sub-
culture of newly invented unequal temperaments,
but with all these approaches the main achievement
of the ET, namely its beautiful key invariance, is
lost.

Is it possible to improve the chromatic ET with-
out destroying its symmetry under key changes? As
we will see in the present work, this is indeed possi-
ble. To understand the basic idea let us recall that
the standard ET is determined by three conditions,
namely, (i) its exponential structure of constant
semitone intervals, (ii) twelve semitones per octave,
and (iii) the obvious condition that the frequency
should double on each octave. This means that the
octave, the simplest and most fundamental of all in-
tervals, is the only pure one in the ET, producing a
static sound without any beats. But why? As we are
ready to tolerate beats for any other interval, why
not for octaves? By allowing the octave to exhibit
beats, would it be possible to arrive at a more bal-
anced temperament? In the past few decades there
have been several proposals to study stretched equal
temperaments. In these temperaments the semitone
frequency ratio is still constant but slightly larger
than 21/12. To my knowledge the first example of
this kind was the Stopper™ tuning scheme intro-
duced by B. Stopper in 1988, which favors a pure
duodecime consisting of 19 semitones instead of the
octave [3]. In 1995 a similar suggestion based on a
perfect fifth was put forward by S. Cordier and K.
Gillessen [4–6], who argued that in practice such
temperaments would be already in use. More re-
cently A. Capurso suggested what is known as the
circular harmonic system (c.ha.s™) [7, 8], where all
intervals exhibit beats. All these proposed chromatic
temperaments belong to the same family in so far as
they are perfectly equal, differing only in their semi-
tone frequency ratio. However, while Stopper and
Cordier simply replace the constraint of one pure
interval by another, the c.ha.s temperament is based
on a more complex reasoning and seeks for an opti-
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mal balance in a regime where none of the intervals
is pure. Which of these temperaments establishes
the best harmonic compromise? In this paper we
would like to address this question quantitatively.
To this end we apply the concept of entropy as a
measure for the harmonicity of a temperament. In
statistical physics and information theory, entropy
is known to quantify the degree of disorder in a data
set. In Ref. [10] we observed that the entropy of pure
(harmonic) intervals is locally minimal since the en-
tropy decreases when higher partials overlap. This
suggests that the entropy of overlaid power spectra
can be used as a measure of harmonicity. Very re-
cently we were able to demonstrate that this concept
can even be used for piano tuning [11]. Therefore,
the obvious question would be what entropy can tell
us about different stretched equal temperaments.

In order to address this question, we generate
artificial harmonic power spectra for various tem-
peraments and compute the corresponding entropy
numerically. As we will see below, our results con-
firm that the standard equal temperament has to
be replaced by a stretched one and also suggests a
range for the possible optimum.

It is very important to realize that stretched tem-
peraments must not be confused with the concept
of “stretched tuning” in the context of piano tun-
ing which is a completely different story. In pianos,
the stiffness of strings causes a deformation of the
harmonic spectrum, known as inharmonicity, which
is compensated in the tuning process by imposing
a stretched tuning curve. Contrarily, in the present
work we discuss an intrinsic stretch of the tempera-
ment itself on the basis of perfectly harmonic sounds
(iH=0).

The paper is organized as follows. In the next sec-
tion various definitions and notations are introduced.
The third section discusses the existing stretched
ETs in more detail. After reviewing the concept of en-
tropy in Sect. 4, the model for generating harmonic
power spectra is introduced in Sect. 5. Finally, the
numerical results are presented in Sect. 6, followed
by a simple visual interpretation of the results.

2. Definitions and notations

2.1. Power spectra

Tones generated by musical instruments are com-
posed of many Fourier components, called partials.
The partials are enumerated by an index n = 1, 2, . . .
with associated frequencies fn in ascending order,
where the lowest frequency f1 is referred to as the
fundamental frequency of the tone.

The power spectral density of a tone is defined as
P (f) = |ψ̃(f)|2, where ψ̃(f) is the Fourier transform
of the sound wave ψ(t). In the power spectrum the
partials appear as peaks whose area Pn is the power
of the nth partial. The total power is then given by

Ptot =
∫ ∞

0
f.P (f) =

∞∑
n=1

Pn . (1)

Typically the power of the nth peak Pn varies with
increasing n and eventually goes to zero so that
the number of partials contributing to the sound is
essentially finite [12].

As in the Heisenberg energy-time uncertainty rela-
tion, the width of the peaks is inversely proportional
to the temporal duration of the sound. In the limit
of an infinitely long-lasting tone one obtains an ide-
alized spectrum with infinitely sharp peaks of the
form

P (f) =
∞∑
n=0

Pn δ(f − fn), (2)

where δ denotes the Dirac delta function.

2.2. Harmonic spectra and pure intervals

A tone is called perfectly harmonic if the frequencies
of the partials are exactly given by integer multiples
of the fundamental frequency:

fn = nf1 . (3)

This means that perfectly harmonic sound are ex-
actly periodic in the fundamental frequency f1, caus-
ing a clean and static sound.

The linear law (3) holds only for ideal oscillators
such as infinitely flexible strings. Realistic oscillators
in musical instruments such as piano strings are of
course not perfectly harmonic. In the present work,
however, we will neglect this instrument-dependent
imperfectness, restricting ourselves to the ideal case
of perfectly harmonic spectra of the form (3).

An interval between two fundamental frequencies
f1 and f1’ is called pure if some of the corresponding
higher partials coincide, meaning that there exist
integers n,m ∈ N such that fn= f’m. In the case
of ideal harmonic oscillators the fundamental fre-
quencies of a pure interval are therefore related by
a rational number:

nf1 = mf ′1 ⇒ f ′1
f1

= n

m
. (4)

Since these coincidences appear periodically in fre-
quency space, the perception of harmonicity is par-
ticularly intense if n and m are small. Examples are
the pure octave (2:1), the perfect fifth (3:2), and the
perfect fourth (4:3).
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1310-4 Revising the musical equal temperament

2.3. Temperaments

Let us consider a chromatic scale of K semitones
with the fundamental frequencies f (

1k) enumerated
by k = 1 . . .K. The set of all frequencies f (

1k) with
respect to a reference tone (usually A4 = 440 Hz) is
referred to as the temperament of the musical scale.

A temperament is called equal if the frequency ra-
tios of all intervals are invariant under transposition
(translational shifts along the keyboard), i.e.,

f
(k+s)
1

f
(k′+s)
1

= f
(k)
1

f
(k′)
1

∀k, k′, s . (5)

Obviously this requires all semitone intervals

Sk := f
(k+1)
1

f
(k)
1

(6)

to be constant.
The standard twelve-tone equal temperament

(ET), which was originally invented in ancient China
[13] and rediscovered in Europe in the 18th century,
is determined by two additional conditions. Firstly
the octave is divided into twelve semitones. Secondly
the octave, the most fundamental of all intervals, is
postulated to be pure (beatless), as described by the
frequency ratio 2:1. These two conditions unambigu-
ously imply that the constant semitone frequency
ratio is given by S = 21/12. Defining a reference
tone with the index kref, for example A4 with the
frequency fref = f

(kref)
1 = 440 Hz, the standard ET

is therefore defined by

f
(k)
1 = frefS

k−kref = fref2(k−kref)/12
. (ET) (7)

2.4. Pitches

Since intervals are defined by frequency ratios rather
than differences, they give rise to a multiplicative
structure in the frequency space. It is therefore mean-
ingful and convenient to consider the logarithm of
the frequencies, mapping it to an additive structure.
In music theory this is done by defining the so-called
pitch

χ := 1200 log2
f

fref
⇔ f = fref 2χ/1200 (8)

with respect to a given reference frequency f ref,
where log2 z = ln z/ ln 2 denotes the logarithm to
base 2. With this definition it is possible to trans-
late frequency ratios into pitch differences. In music
theory such pitch differences are usually measured
in cents (¢), defined as 1/100 of a semitone in the

standard ET. Therefore, in terms of pitch variables
the ET is simply given as

χ
(k)
1 = 100(k − kref) . (ET) (9)

With pitches it is possible to specify interval sizes
conveniently in cents. For example, the perfect fifth
has a size of 1200 log2

3
2 ≈ 701.955¢, which is slightly

larger than the fifth in the standard ET with a size
of exactly 700¢.

When going from frequencies to pitches, the power
spectral density P(f) has to be recast as a spectral
density P (χ) in terms of the pitch variable by means
of the transformation

P (χ) = P (f)
dχ/df = 1200

ln 2
P (f)
f

. (10)

If we apply this transformation to the idealized
peaked spectrum in Eq. (2) we find that formally
the same expression holds for the pitch variables as
well, namely

P (χ) =
∞∑
n=0

Pn δ(χ− χn), (11)

3. Stretched equal temperaments

In what follows we consider equal chromatic tem-
peraments of the form

f
(k)
1 ∝ Sk , (12)

where the semitone ratio S is constant but slightly
different from 21/12, meaning that the semitone in-
terval size deviates marginally from 100¢. This de-
viation, measured in units of cents, will be denoted
by ε, i.e., we consider equal temperaments with the
semitone pitch difference

χS = 100¢ + ε . (13)

The corresponding frequencies and pitches of these
modified temperaments are given by

f
(k)
1 = fref 2(k−kref)(1+ε/100)/12

, (14)

χ
(k)
1 = χref + (100 + ε)(k − kref) . (15)

Here ε is a free parameter which quantifies the
stretch or quench of the temperament relative to the
standard ET. As we will see, the stretch parameter
ε is of the order of a few hundredths cents. There-
fore, as a convenient notation for what follows, we
shall denote by ETx a stretched equal temperament
with a semitone stretch of ε = x

1000¢. For example,
ET0 is just the standard equal temperament while
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ET50 would denote a stretched equal temperament
with ε = 0.05¢ or 50 millicents. Since stretch differ-
ences of less than a millicent would not be audible,
the resolution in terms of millicents is more than
sufficient.

The class of stretched 12-tone ETs comprises sev-
eral special cases, as will be discussed in the follow-
ing.

3.1. Special cases

The Stopper™ equal temperament [3] replaces the
constraint of pure octaves by pure duodecimes,
meaning that S19 = 3. This corresponds to taking

εStopper = 1200
19 log2 3− 100 ≈ 0.103 . (16)

The stretch of the Cordier equal temperament [4],
which postulates perfect fifths, is even higher,
namely

εCordier = 1200
7 log2

3
2 − 100 ≈ 0.279 . (17)

Finally, in the c.ha.s™ equal temperament the semi-
tone ratio is defined by the implicit equation [7, 8]

S = (3−∆)1/19 = (4 + s∆)1/24 (18)

with two construction-specific parameters s and
∆, where the special case of c.ha.s corresponds to
setting s = 1. Solving this equation one obtains
∆ ≈ 0.0213, corresponding to the stretch parameter

εc.ha.s = 1200
19 log2(3−∆) ≈ 0.038 . (19)

All these temperaments, which are summarized in
Table 1, are strictly equal in the sense that the
semitone frequency ratio is constant. They belong
to a whole continuum of possible stretched twelve-
tone equal temperaments labeled by the parameter
ε.

4. Entropy as a harmonicity measure

4.1. Entropy detecting overlapping peaks

In statistical physics and information theory, the dif-
ferential entropy of a normalized probability density

Table 1: Chromatic equal temperaments compared in the
present work.

Temperament Shortcut ε S
Standard ET ET0 0 1.0594631
c.ha.s ET38 0.038 1.0594865
Stopper ET103 0.103 1.0595251
Cordier ET279 0.279 1.0596340

p(χ) is defined as

H = −
∫

dχp(χ) log2 p(χ) . (20)

The entropy quantifies the information in units of
bits that is required to specify a randomly cho-
sen value of x according to the distribution p(x)
in a given resolution. Thus the enropy of a strongly
peaked distribution is low while a broad distribution
has a high entropy. This can be demonstrated nicely
in the example of a Gaussian distribution

pσ(χ) = 1
σ
√

2π
e−

χ2

2σ2 (21)

for which the entropy

Hσ = 1
2 log2(2πe) + log2 σ (22)

increases logarithmically with the standard devia-
tion σ. But the entropy is not only able to quantify
the peakedness of a distribution and its associated
information content, even more important in the
present context is its ability to detect overlapping
peaks. As an example let us consider the sum of
two normalized Gaussian peaks of width σ which
are separated by the distance ∆χ:

p(χ) = 1
2
[
pσ(χ+ ∆χ/2) + pσ(χ−∆χ/2)

]
= 1

2σ
√

2π

(
e−

(χ+∆χ/2)2

2σ2 + e−
(χ−∆χ/2)2

2σ2
)
. (23)

If the two peaks are sufficiently separated like in the
upper left panel of Fig. 2, it is clear that the entropy
will be independent of their distance ∆χ. But as
soon as the peaks begin to overlap the entropy de-
creases and becomes minimal for perfect coincidence
∆χ = 0, as shown in the right panel of the figu-
re. It is this property that allows entropy to detect
overlapping partials as a signature of consonance
and harmony.

4.2. Entropy applied to acoustic power spec-
tra

As already outlined in the introduction, an inter-
val is perceived as harmonic if the corresponding
partials of the constituting tones coincide partially.
Therefore, interpreting the normalized power spec-
trum as a probability density, it is plausible that the
entropy will attain a local minimum for an optimal
compromise of overlapping partials. More specifi-
cally, in order to compute the entropy we first have
to determine the total power

Ptot =
∫ ∞

0
dχP (χ) . (24)
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1310-6 Revising the musical equal temperament

Figure 2: Example illustrating how entropy responds to overlapping spectral peaks. The left figure shows a superposition of
two peaks with a standard deviation of one cent. If the two peaks do not overlap the corresponding entropy is independent
of their distance. However, as soon as the peaks begin to overlap the entropy decreases (see right panel) and becomes
minimal for perfect coincidence. This property allows entropy to be used as a measure for the proximity of spectral lines in
the power spectrum of sound waves.

Defining the normalized power spectrum p(χ) = P (χ)
Ptot

,
the entropy associated with the sound wave is then
given by

H[p] = −
∫ ∞

0
dχp(χ) log2 p(χ) . (25)

As one can see, in this approach the influence of the
partials is automatically weighted by their power.
Therefore, the entropy does not only detect overlap-
ping partials but even assigns to them a different
weight according to their intensity.

In the following section we are going to define
a certain model for the composition of the power
spectrum based on a given temperament. This model
is then used to compute the entropy as a function
of the parameter ε. The goal is to find the value of ε
for which the entropy becomes minimal, indicating
the best compromise of overlapping partials and
therewith the most harmonic temperament.

5. Definition of the model

In the analysis to be presented below we consider an
artificial superposition of perfectly harmonic tones.
In order to apply the concept of entropy, we need
to make two assumptions:

• We have to make a reasonable assumption
about the power of the partials P (k)

n . These co-
efficients determine the texture of a harmonic
sound. In realistic situations the power can be

distributed over dozens of partials and the coef-
ficients may even vary with time [12]. However,
in order to keep the analysis as simple as possi-
ble we shall assume an exponential decrease of
the form

P (k)
n := P

(k)
1 e−(n−1)/λ ∝ e−n/λ , (26)

where λ is a free parameter. This parameter
controls the brilliance (overtone richness) of
the sound waves. Roughly speaking λ can be
interpreted as the index of the partial where
the center of the cumulative power distribution
is located.

• The Dirac δ-peaks in Eq. (2) are infinitely fo-
cused, meaning that they never overlap. Thus,
in order to apply the entropy criterion, we have
to give them a finite width. To this end we con-
volve the spectrum with a normal distribution
of constant width σ, obtaining the spectrum

P (k)(χ) = 1
σ
√

2π

∞∑
n=0

P (k)
n e−

(χ−χ(k)
n )2

2σ2 . (27)

The standard deviation σ in cents enters as an-
other free parameter which expresses to what
extent our sense of hearing is willing to toler-
ate deviations from pure intervals. Since the
standard ET comes with deviations from pure
tuning ranging from 2 to 16 cents, it is rea-
sonable to choose σ as a constant in the same
range.
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Finally we have to decide which of the tones we
would like to compare. In order to avoid any pref-
erence the simplest choice is to compare all tones
simultaneously, a concept which also turned out to
be useful in the context of entropy-based tuning [10].
This means that we simply add up the power spectra
of all K tones, as sketched in Fig. 3. The resulting
power spectrum reads

P (χ) = 1
Kσ
√

2π

K∑
k=1

∞∑
n=0

P (k)
n e−

(χ−χ(k)
n )2

2σ2 . (28)

Inserting Eq. (26) as well as the pitches of the har-
monics in the ε-stretched temperament

χ(k)
n = χref+(100+ε)(k−kref)+1200 log2 n (29)

and dividing by the total power (24) we
arrive at the normalized power spectrum

pε,K,λ,σ(χ) = 1
Ptot

K∑
k=1

∞∑
n=0

exp
(
−n
λ
−

(χ− χref − (100 + ε)(k − kref)− 1200 log2 n)2

2σ2

)
(30)

of which we will compute the entropy

Hε,K,λ,σ = (31)

−
∫ ∞

0
dχ pε,K,λ,σ(χ) log2 pε,K,λ,σ(χ) .

This entropy depends on four parameters, namely,
the stretch parameter ε, the number of tones K, the
overtone richness parameter λ, and the width of the
spectral peaks σ. Note that kref and χref cancel out
in the normalization so that the entropy does not
depend on the overall pitch and the chosen reference
key.

6. Numerical results

The integral (30)-(31) is not exactly solvable and
thus it can only be calculated numerically. Moreover,
the integrand is highly oscillatory so that ordinary
integrators of algebraic computer systems are prone
to fail. Therefore, we compute the integral by an
ordinary Simpson integration in C++, discretizing
the pitch χ in bins of 1/1000 cents.

For a first survey we consider a particular example
which is shown in Fig. 4. In this example we chose
K = 88 tones and the decay parameter λ = 10. The
left panel shows the entropy as a function of ε for
σ = 0.5¢ which is much smaller than the tolerance of
human hearing. In this case the entropy is minimal
for ε = 0, which is just the standard ET. This result

Figure 3: Artificially generated power spectra used in the present paper. The black lines represent perfectly harmonic
power spectra of K = 88 tones (four of which are shown) with partials whose power decreases exponentially as e-n/4. The
sum of all K tones is shown at the bottom in red color. This sum spectrum, which may be thought of as hearing all tones
simultaneously, is used to compute the entropy.
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1310-8 Revising the musical equal temperament

Figure 4: Entropy of the generalized temperament as a function of the parameter ε in units of millicents ( 1
1000¢) for

K = 88 and λ = 10. For very small values of σ (left panel) the entropy is minimal in the standard equal temperament
(ET), while for larger values of σ (right panel) the minimum (harmonic temperament, HT) is clearly found at a value
ε > 0. The value is slightly larger than the one predicted in Ref. [7] (dashed line) but it is of the same order of magnitude.

is plausible since for ε = 0 the octaves lock in and the
entropy measure is so rigid that it does not like to
depart from this point. However, as we increase the
tolerance, e.g. by taking the realistic value σ = 5¢
as in the right panel, we find as expected that the
entropy changes less, but most strikingly there is a
new minimum appearing at a non-vanishing value
of ε. This means that the corresponding stretched
temperament should be more harmonic than the
standard ET. The minimum is located at ε ≈ 0.05¢,
somewhat larger than the value ε = 0.038¢ predicted
by the c.ha.s but significantly lower than the values
suggested by Stopper and Cordier.

As we have made various additional assumptions
in our model expressed in terms of the parameters
σ and λ, we have to analyze the robustness of this
result. To this end we carried out a systematic scan
over the whole range of λ and σ. For given values
of these parameters we search for the value of ε
where the entropy H becomes minimal, as sketched
in Fig. 5. The result of this scan (see Fig. 6) can be
interpreted as follows:

• Parameter λ controlling the overtone richness:
For λ = 0 (plain sine waves without higher par-
tials) temperaments have no meaning. For small
λ < 1 only the fundamental and the second par-
tial contribute. For this reason octaves lock in
so that the standard ET is favored. However, as
λ increases so that more and more partials con-
tribute, the minimum suddenly jumps to a high
value of ε ≈ 0.06¢. From here on the entropy
method clearly prefers a stretched temperament.
This value is pretty stable until for very large
λ > 6 one observes a gradual decrease, where
so many partials begin to contribute that the
method becomes unstable.

• Parameter sigma controlling the peak width:
For σ = 0 the method does not tolerate any
beats, hence the standard temperament with

pure octaves provides a local minimum. As
shown before, the situation changes suddenly
when σ exceeds a threshold of about 2¢. More-
over, the figure shows that the optimal value of
ε is quite stable as we increase σ even further. In
other words, increasing our tolerance for pitch
deviations does not lead to significantly differ-
ent solutions for the optimal temperament.

The extended plateau shows that the two ad-hoc
parameters, the spectral brilliance expressed by λ
and the human pitch mismatch tolerance expressed
by σ, have only little influence on ε, suggesting that
the result is stable and robust. On the plateau the
optimal value of ε ranges roughly between 0.040¢
and 0.065¢.

Finally we studied the influence of the parameter
K, the total number of semitones in the scale (not
shown here). Taking K = 49 we basically find the
same structure although the level of the plateau is
somewhat lower, ranging approximately from 0.035¢
to 0.055¢, now including c.ha.s as a special case.

7. Visual interpretation

The results obtained in the previous section can
be understood quite easily by visual inspection of
the spectral sum. To this end we zoom the power
spectrum in a small corridor around 880 Hz, cor-
responding to the tone A5 (highlighted as a small
green rectangle in Fig. 3). In the left panel of Fig. 7
we demonstrate how the spectral lines around A5
depend on the stretch parameter ε. Our observations
can be summarized as follows:

• In case of the equal temperament (red line at
the bottom) the sound of A5 consists of five
peaks. The peak at 880 Hz is the strongest
one because it is made up of six contributions
coming from A0,A1,...,A5 by means of pure
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Figure 5: Schematic illustration of the entropy minimization method.

Figure 6: Systematic scan over the (λ, σ) parameter space for a scale with K = 88 tones. Both figures show the optimal
value of parameter ε, where the entropy becomes minimal, in units of millicents (mct). As can be seen, an extended plateau
emerges where ε is rather insensitive to the parameters, indicating a high degree of robustness.

octaves. Moreover, we observe four adjacent
peaks on the right side which are generated by
different interval combinations on the chromatic
scale. Remarkably, these peaks are arranged in
a totally asymmetric way, i.e., they are found
exclusively on the right side of the fundamental
peak.

• Choosing a small value ε > 0 the octave sym-
metry is broken, lifting the degeneracy of the
peaks. Increasing ε we finally arrive at a point
of maximal symmetry at ε ≈ 0.05¢. At this
point one has small peaks which are arranged
symmetrically around 880 Hz.

• Increasing the stretch parameter even further
another interval is becoming pure, leading
again to asymmetrically distributed degener-
ated peaks. This is just the Stopper tempera-
ment, favoring pure duodecimes.

The figure gives also an intuitive understanding why
the stretched temperament for ε ≈ 0.05¢ is more
harmonic and why the entropy is able to detect the
harmonic optimum. This is demonstrated in the
upper right panel, where the same data is shown for
a broader peaks with the width σ = 2. As can be
seen by bare eye, the green curve in the middle is
the most symmetric and most focused one, making
it plausible why entropy becomes minimal at this
point.

8. Hearing the difference

Within a single octave the tiny stretch differences
discussed in the present paper are so small that they
are probably not audible. However, the situation is
different for composite sounds extending over several
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Figure 7: Understanding the effect of stretching visually. Left panel: Variation of the spectral sum (31) near the fundamental
frequency of A5 for various values of the stretch parameter ε (see legend). Upper right panel: Same data shown for spectral
peaks with the standard deviation σ = 2.

octaves. Here the dependence on ε can be heard in
the balance of beat frequencies of the partials.

As a simple example let us consider a particular
chord based on C3, combined with two fifths C4-
G4-C5-G5. In the standard ET the partials at C4
and C5 match perfectly without any beats while
G4 and G5 differ slightly from the corresponding
partials in the harmonic series of C3, exhibit 0.44
and 0.89 beats per second. In the stretched case
these beat frequencies are reduced on the expense
of the octave which starts to beat by itself. In the
optimal range of c.ha.s and ET50 all these beats are
balanced and well below 0.5 Hz. However, increasing
ε even further the situation becomes again worse,
as summarized in Table 2.

9. Conclusions

Using entropy as a measure of harmonicity we have
provided numerical evidence that the standard equal
temperament with semitone frequency ratio 21/12

does not represent the harmonic optimum, the op-
timum is rather obtained for a slightly larger fre-
quency ratio. In such a stretched equal temperament
the octave is no longer beatless but by tolerating
slightly tempered octaves the beats of other inter-
vals can be reduced, leading all in all to a more
harmonic and balanced temperament. The proposed
harmonized temperament (HT) is defined by

f (k) = fref 2
(1+ε/100)

12 (k−kref) (32)

with a free parameter ε (see Eqs. (14)-(15)). De-
pending on the number of tones in the scale and the

richness of partials the method of entropy minimiza-
tion predicts values in the range

0.035 ¢ . ε . 0.065 ¢. (33)
According to this result, the temperaments proposed
by Stopper and Cordier can be ruled out as long as
we restrict ourselves to perfectly harmonic sounds.
The c.ha.s™ temperament (ε = 0.038 ¢), however,
is consistent with the entropy method, indicating
that c.ha.s is capturing the right idea, namely, to
embrace all intervals as part of a whole and to look
for the optimal order of beats. However, choosing
the most plausible parameters the predicted optimal
value for ε tends to be somewhat larger, roughly
centered around

ε ≈ 0.05 ¢ , (34)
and it would be interesting to study where this
discrepancy comes from. Let us again remind the
reader that the predicted stretch ε has nothing to
do with stretched tuning curves in the context of
piano tuning. This would be an additional effect
on top of the present one caused by the physical
inharmonicity of piano strings. Contrarily, in the
present study the semitone stretch ε is a property
of the equal temperament itself, assuming perfectly
harmonic spectra of partials. Nevertheless we expect
our findings to be also relevant for piano tuning if
inharmonicity is taken into account as an additional
effect.

In conclusion our results call for replacing the
equal temperament by a stretched equal tempera-
ment of the form (32) as a new standard for musical
instruments with fixed frequencies.
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Table 2: Frequency of beats in Hz for the chord C3-C4-G4-C5-G5.
Temperament Standard c.ha.s this work Stopper Cordier

Shortcut ET0 ET38 ET50 ET103 ET279

beats at C4 0 0.07 0.09 0.18 0.5
beats at G4 0.44 0.28 0.23 0 0.75
beats at C5 0 0.28 0.36 0.74 2.02
beats at G5 0.89 0.35 0.18 0.56 3.03

An important open question would be the ap-
propriate choice of the parameter ε for such a new
standard. Would it be sufficient to choose a fixed
value as a reasonable compromise for all purposes?
Or do we have to keep ε as a free parameter varying
in the range (33), chosen as a matter of taste? Care-
ful empirical studies are needed in order to find out
how much this parameter influences the perception
of the temperament.
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Appendix
Frequency table

Frequency table.
k tone ET [Hz] c.ha.s [Hz] ∆χ [¢] ET50 [Hz] ∆χ [¢] ET60 [Hz] ∆χ [¢]
1 A 0 27.50 27.47 -1.82 27.46 -2.40 27.45 -2.88
2 A]0 29.14 29.11 -1.79 29.10 -2.35 29.09 -2.82
3 B 0 30.87 30.84 -1.75 30.83 -2.30 30.82 -2.76
4 C 1 32.70 32.67 -1.71 32.66 -2.25 32.65 -2.70
5 C]1 34.65 34.61 -1.67 34.60 -2.20 34.60 -2.64
6 D 1 36.71 36.67 -1.63 36.66 -2.15 36.65 -2.58
7 D]1 38.89 38.86 -1.60 38.84 -2.10 38.83 -2.52
8 E 1 41.20 41.17 -1.56 41.15 -2.05 41.14 -2.46
9 F 1 43.65 43.62 -1.52 43.60 -2.00 43.59 -2.40
10 F]1 46.25 46.21 -1.48 46.20 -1.95 46.19 -2.34
11 G 1 49.00 48.96 -1.44 48.95 -1.90 48.93 -2.28
12 G]1 51.91 51.87 -1.41 51.86 -1.85 51.85 -2.22
13 A 1 55.00 54.96 -1.37 54.94 -1.80 54.93 -2.16
14 A]1 58.27 58.23 -1.33 58.21 -1.75 58.20 -2.10
15 B 1 61.74 61.69 -1.29 61.67 -1.70 61.66 -2.04
16 C 2 65.41 65.36 -1.25 65.34 -1.65 65.33 -1.98
17 C]2 69.30 69.25 -1.22 69.23 -1.60 69.22 -1.92
18 D 2 73.42 73.37 -1.18 73.35 -1.55 73.34 -1.86
19 D]2 77.78 77.73 -1.14 77.71 -1.50 77.70 -1.80
20 E 2 82.41 82.35 -1.10 82.34 -1.45 82.32 -1.74
21 F 2 87.31 87.25 -1.06 87.24 -1.40 87.22 -1.68
22 F]2 92.50 92.44 -1.03 92.43 -1.35 92.41 -1.62
23 G 2 98.00 97.94 -0.99 97.93 -1.30 97.91 -1.56
24 G]2 103.83 103.77 -0.95 103.75 -1.25 103.74 -1.50
25 A 2 110.00 109.94 -0.91 109.92 -1.20 109.91 -1.44
26 A]2 116.54 116.48 -0.87 116.46 -1.15 116.45 -1.38
27 B 2 123.47 123.41 -0.84 123.39 -1.10 123.38 -1.32
28 C 3 130.81 130.75 -0.80 130.73 -1.05 130.72 -1.26
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Frequency table (cont.).
k tone ET [Hz] c.ha.s [Hz] ∆χ [¢] ET50 [Hz] ∆χ [¢] ET60 [Hz] ∆χ [¢]
29 C]3 138.59 138.53 -0.76 138.51 -1.00 138.50 -1.20
30 D 3 146.83 146.77 -0.72 146.75 -0.95 146.74 -1.14
31 D]3 155.56 155.50 -0.68 155.48 -0.90 155.47 -1.08
32 E 3 164.81 164.75 -0.65 164.73 -0.85 164.72 -1.02
33 F 3 174.61 174.55 -0.61 174.53 -0.80 174.52 -0.96
34 F]3 185.00 184.94 -0.57 184.92 -0.75 184.90 -0.90
35 G 3 196.00 195.94 -0.53 195.92 -0.70 195.90 -0.84
36 G]3 207.65 207.59 -0.49 207.57 -0.65 207.56 -0.78
37 A 3 220.00 219.94 -0.46 219.92 -0.60 219.91 -0.72
38 A]3 233.08 233.03 -0.42 233.01 -0.55 232.99 -0.66
39 B 3 246.94 246.89 -0.38 246.87 -0.50 246.86 -0.60
40 C 4 261.63 261.57 -0.34 261.56 -0.45 261.54 -0.54
41 C]4 277.18 277.13 -0.30 277.12 -0.40 277.11 -0.48
42 D 4 293.66 293.62 -0.27 293.61 -0.35 293.59 -0.42
43 D]4 311.13 311.09 -0.23 311.07 -0.30 311.06 -0.36
44 E 4 329.63 329.59 -0.19 329.58 -0.25 329.57 -0.30
45 F 4 349.23 349.20 -0.15 349.19 -0.20 349.18 -0.24
46 F]4 369.99 369.97 -0.11 369.96 -0.15 369.96 -0.18
47 G 4 392.00 391.98 -0.08 391.97 -0.10 391.97 -0.12
48 G]4 415.30 415.30 -0.04 415.29 -0.05 415.29 -0.06
49 A 4 440.00 440.00 0.00 440.00 0.00 440.00 0.00
50 A]4 466.16 466.17 0.04 466.18 0.05 466.18 0.06
51 B 4 493.88 493.90 0.08 493.91 0.10 493.92 0.12
52 C 5 523.25 523.29 0.11 523.30 0.15 523.31 0.18
53 C]5 554.37 554.41 0.15 554.43 0.20 554.44 0.24
54 D 5 587.33 587.39 0.19 587.41 0.25 587.43 0.30
55 D]5 622.25 622.34 0.23 622.36 0.30 622.38 0.36
56 E 5 659.26 659.36 0.27 659.39 0.35 659.42 0.42
57 F 5 698.46 698.58 0.30 698.62 0.40 698.65 0.48
58 F]5 739.99 740.14 0.34 740.18 0.45 740.22 0.54
59 G 5 783.99 784.16 0.38 784.22 0.50 784.26 0.60
60 G]5 830.61 830.81 0.42 830.87 0.55 830.93 0.66
61 A 5 880.00 880.23 0.46 880.31 0.60 880.37 0.72
62 A]5 932.33 932.59 0.49 932.68 0.65 932.75 0.78
63 B 5 987.77 988.07 0.53 988.17 0.70 988.25 0.84
64 C 6 1046.50 1046.85 0.57 1046.96 0.75 1047.05 0.90
65 C]6 1108.73 1109.12 0.61 1109.24 0.80 1109.35 0.96
66 D 6 1174.66 1175.10 0.65 1175.24 0.85 1175.35 1.02
67 D]6 1244.51 1245.00 0.68 1245.16 0.90 1245.28 1.08
68 E 6 1318.51 1319.06 0.72 1319.23 0.95 1319.38 1.14
69 F 6 1396.91 1397.53 0.76 1397.72 1.00 1397.88 1.20
70 F]6 1479.98 1480.66 0.80 1480.88 1.05 1481.06 1.26
71 G 6 1567.98 1568.74 0.84 1568.98 1.10 1569.18 1.32
72 G]6 1661.22 1662.06 0.87 1662.32 1.15 1662.54 1.38
73 A 6 1760.00 1760.93 0.91 1761.22 1.20 1761.46 1.44
74 A]6 1864.66 1865.68 0.95 1866.00 1.25 1866.27 1.50
75 B 6 1975.53 1976.66 0.99 1977.02 1.30 1977.31 1.56
76 C 7 2093.00 2094.25 1.03 2094.64 1.35 2094.96 1.62
77 C]7 2217.46 2218.82 1.06 2219.25 1.40 2219.61 1.68
78 D 7 2349.32 2350.81 1.10 2351.29 1.45 2351.68 1.74
79 D]7 2489.02 2490.66 1.14 2491.17 1.50 2491.61 1.80
80 E 7 2637.02 2638.82 1.18 2639.38 1.55 2639.86 1.86
81 F 7 2793.83 2795.79 1.22 2796.41 1.60 2796.93 1.92
82 F]7 2959.96 2962.10 1.25 2962.78 1.65 2963.34 1.98
83 G 7 3135.96 3138.30 1.29 3139.04 1.70 3139.66 2.04
84 G]7 3322.44 3324.99 1.33 3325.80 1.75 3326.47 2.10
85 A 7 3520.00 3522.78 1.37 3523.66 1.80 3524.39 2.16
86 A]7 3729.31 3732.34 1.41 3733.30 1.85 3734.10 2.22
87 B 7 3951.07 3954.36 1.44 3955.41 1.90 3956.27 2.28
88 C 8 4186.01 4189.59 1.48 4190.73 1.95 4191.67 2.34
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