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This article was written to students of mathematics, physics and engineering. In general, the word
chaos may refer to any state of confusion or disorder and it may also refer to mythology or philosophy.
In science and mathematics it is understood as irregular behavior sensitive to initial conditions. In
this article we analyze the deterministic chaos theory, a branch of mathematics and physics that deals
with dynamical systems (nonlinear differential equations or mappings) with very peculiar properties.
Fundamental concepts of the deterministic chaos theory are briefly analyzed and some illustrative
examples of conservative and dissipative chaotic motions are introduced. Complementarily, we studied in
details the chaotic motion of some dynamical systems described by differential equations and mappings.
Relations between chaotic, stochastic and turbulent phenomena are also commented.
Keywords: chaos theory, differential equations; Poincaré sections; mapping; Lyapunov exponent.

Este artigo foi escrito para estudantes de matemática, f́ısica e engenharia. Em geral, a palavra caos
pode se referir a qualquer estado de confusão ou a desordem, mas também se referir a mitologia ou
filosofia. Em ciência e matemática é entendido como um comportamento irregular senśıvel às condições
iniciais. Neste artigo vamos analisar a teoria do caos determińıstico, um ramo da matemática e da f́ısica
que lida com sistemas dinâmicos (equações diferenciais não-lineares ou mapeamentos), com propriedades
muito peculiares. Conceitos fundamentais da teoria do caos determińıstico são brevemente analisados
e alguns exemplos ilustrativos de movimentos caóticos conservativos e dissipativos são introduzidos.
Complementarmente, estudamos em detalhes o movimento caótico de alguns sistemas dinâmicos descritos
por equações diferenciais e mapeamentos. As relações entre fenõmenos caóticos, estocásticos e turbulentos
também são comentados.
Palavras-chave: teoria do caos, equações diferencias, seções de Poincaré; mapeamento; expoente de
Lyapunov.

1. Introduction

This paper was written for students of mathemat-
ics, physics and engineering. Are briefly analyzed
essential aspects of the growing field of mathematics
and physics that has been applied to study a large
number of phenomena generically named chaotic.
These are present in many areas in science and engi-
neering [1–4], including astronomy, plasma physics,
statistical physics, hydrodynamics and biology. As
in Greek the word chaos (χαoç) means confusion,
random, stochastic, and turbulent processes may be
misleading associated with chaos. However, rigor-

∗Endereço de correspondência: mcattani@if.usp.br.

ously they are different in the framework of physics
and mathematics, as will be shown. This article
analyzes only the basic points of chaos theory, as
exactly as possible from the mathematical point
of view, avoiding sometimes a rigorous approach.
In Section 2 we define chaos, in the context of the
deterministic chaos theory, as a consequence of pe-
culiar properties of deterministic nonlinear ordinary
differential equations (NLODE) [5]. These equations
that describe dynamic systems have a time evolution
strongly dependent on initial conditions. Chaotic
motion occurs depending of initial conditions and
parameters values of the nonlinear equations.

Copyright by Sociedade Brasileira de F́ısica. Printed in Brazil.

www.scielo.br/rbef
mcattani@if.usp.br


e1309-2 Deterministic Chaos Theory: Basic Concepts

In Section 3 is seen the difference between chaotic
and stochastic (or random) processes. In Section 4,
to give a general idea about the chaos, we study
in details the Duffing equation and the dissipative
motion of a driven damped pendulum, introducing
the Poincaré technique. In Section 5 we show that
it is possible to get a good description of chaotic
processes using an iterative algebraic model named
mapping. As examples, we introduce the logistic and
the Hénon maps. In Section 6 is presented the Lya-
punov characteristic exponent, used to quantify the
sensitive dependence on initial conditions for chaotic
behavior. Finally, in Section 7 is briefly discussed
an open problem: the relation between turbulence
and chaos.

2. Definition of Deterministic Systems
and Chaos

Usually in physics basics courses [1,3,4,6,7] we learn
that all physical laws are described by differential
equations. So, integrating, that is, solving analyti-
cally or numerically these equations, knowing the
initial and boundary conditions (see Section 4), we
would know the future of a physical system for all
times. This is the deterministic view of nature. In
other words, physics systems are deterministic be-
cause they obey deterministic differential equations.
They can be conservative or dissipative. Remark
that the deterministic development refers to the
way as a system develops from one moment to the
next, where the present system depends on the one
just past in a well-determined way through physical
laws [1,3,4,6,7]. If the initial states of deterministic
systems were exactly known, future states would be
precisely theoretically predicted.

This deterministic view survived to be questioned
after the famous visionary works of Henri Poincaré
on celestial mechanics [8] performed at the end of
the 19th. These works begin in 1880 when he found
non-periodic orbits in the three-body problem.

According to Poincaré [8, 9]: ”If we knew exactly
the law of nature and the situation of the universe
at the initial moment, we could predict exactly the
situation of that same universe at a succeeding mo-
ment. But even if it were the case that the natural
laws had no longer any secret for us, we could still
only know the initial situation approximately. If it
enabled us to predict the succeeding situation with
the same approximation, that is all we require, and

we should say that the phenomenon had been pre-
dicted, that it is governed by laws. But it is not
always so: it may happen that small differences in
the initial conditions produce very great ones in the
final phenomena. A small error in the former will
produce an enormous error in the latter. Predic-
tion becomes impossible, and we have the fortuitous
phenomenon”.

In practice, as observed for many systems, knowl-
edge about the future state is limited by the preci-
sion with which the initial state can be measured.
That is, knowing the laws of nature is not enough to
predict the future. There are deterministic systems
whose time evolution has a very strong dependence
on initial conditions. That is, the differential equa-
tions that govern the evolution of the system are very
sensitive to initial conditions. Usually we say that
even a tiny effect, such as a butterfly flying nearby,
may be enough to vary the conditions such that the
future is entirely different than what it might have
been, not just a tiny bit different [1–3, 10]. In this
way, measurements made on the state of a system
at a given time may not allow us to predict the
future situation even moderately far ahead, despite
the fact that the governing equations are exactly
known. By definition, these equations are named
chaotic and that they predict a deterministic chaos.

Only in recent years, with advent of computers
that was allowed chaos to be studied because now
it is possible to perform numerical calculations of
the time evolution of the properties of systems sen-
sitive to initial conditions. We begin to understand
the existence of chaos when computers were readily
available to calculate the long-time histories required
to explain the discussed behavior. It did not hap-
pen until the 1970s. After almost one century of
investigations we learned that chaotic systems can
only be solved numerically, and there are no simple,
general ways to predict when a system will exhibit
chaos [1–3, 10]. We have also learned that deter-
ministic chaos is always associated with nonlinear
systems; nonlinearity is a necessary condition for
chaos but not a sufficient one.

3. Random or Stochastic Process

According to Section 2 the deterministic model will
always produce the same output from a given start-
ing condition or initial state. On the other hand,
a random process, sometimes called stochastic pro-
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cess, is a collection of random variables, representing
the evolution of some system of random values over
time [11]. Instead of describing a process which can
only evolve in one way (as, for example, the so-
lutions of an ordinary differential equation), in a
stochastic process there is some indeterminacy: even
if the initial condition is known, there are several
(often infinitely many) directions in which the pro-
cess may evolve. There is a probabilistic evolution
of the initial states.

As an example, let us consider the Langevin
[11,12] stochastic process. He proposed in 1908 the
following stochastic differential equation to describe
the Brownian (random) motion of a particle im-
mersed in a fluid [11,12]:

m
d2x

dt2
= −λdx

dt
+ η(t). (1)

The degree of freedom of interest here is the po-
sition x of the particle, m denotes the particle’s
mass. The force acting on the particle is written as
a sum of a viscous force proportional to the parti-
cle’s velocity (Stokes’ law), and a noise term η(t)
(the name given in physical contexts to terms in
stochastic differential equations which are stochas-
tic processes) representing the effect of the collisions
with the molecules of the fluid. The force η(t) has a
Gaussian probability distribution with correlation
function

< ηi(t)ηj(t′) >= 2λκBTδi,jδ(t− t′), (2)

where κB is Boltzmann’s constant and T is the tem-
perature. The δ-function form of the correlations in
time means that the force at a time t is assumed
to be completely uncorrelated with it at any other
time. This is an approximation; the actual random
force has a nonzero correlation time correspond-
ing to the collision time of the molecules. However,
Langevin’s equation is used to describe the motion
of a macroscopic particle at a much longer time
scale, and in this limit the δ-correlation and the
Langevin equation become exact.

It can be difficult to tell from data whether a
physical or other observed process is random or
chaotic [11, 13]. In reference [3] one can see some
procedures proposed to distinguish between deter-
ministic chaos and stochastic behavior.

Finally, in quantum mechanics, the Schrödinger
equation, which describes the continuous time evo-
lution of a system’s wave function, is determinis-
tic [14], besides the well known relationship between

the wave function and the observable properties of
the system.

4. Deterministic Chaos

According to Section 2, after 130 years of investi-
gations, it is known that chaotic phenomenon may
be observed when dynamic systems obey nonlinear
ordinary differential equations (NLODE)1 or par-
1Ordinary Differential Equations: In mathematics, an
ordinary differential equation (ODE) is an equation containing
a function of one independent variable and its derivatives [15,
16]. The term ordinary is used in contrast with the term partial
differential equation (PDE) which may be with respect to
more than one independent variable. Let x be an independent
variable and y = y(x) a linear and continuous function of x.
Indicating by y(n) = dny/dxn the derivative of order n of the
function y(x) an implicit ODE of order n can be generally
written as

F (x, y, y′, ..., y(n)) = 0, (3)
where F is a continuous linear function of x and of the con-
tinuous y(x) and of their derivatives yn(x). In this case the
equation is defined as linear differential equation or simply
ODE. When nonlinear terms are present, F is an ordinary
nonlinear differential equation (NLODE).
Existence and Uniqueness of Solutions of ODE: It can
be shown [15–18] that there is one and only one solution of
(3) in an interval (xo −∆, xo + ∆), with ∆ > 0, given by a
continuous function (or trajectory)

y = y(x, co, c1, c2, ..., cn), (4)

where co = y(xo) and cn = y(n)(xo) (n=1,. . . , n) are arbitrary
constants (initial conditions). Note that general solutions of
ODEs involve the knowledge of arbitrary constants. The so-
lution (4) can be obtained analytically or by graphical and
numerical methods. The existence and uniqueness of the
ODE solutions are established by several theorems [15,17,19].
Now let us assume that at xo there are two different ini-
tial conditions: one given y(xo, co, c1, c2, ..., cn) and another
y(xo, Co, C1, C2, ..., Cn) when Cn = cn + δn, with δn << cn.
At a point x 6= xo we have the difference ∆y given by
∆y = y(x, co, c1, c2, ..., cn)−y(x,Co, C1, C2, ..., Cn). Since y is
as a continuous function of the variables x, cn and Cn, ∆y can
be expanded in a series in a first order approximation of the
increments δn. In this way, for arbitrarily small increments δn

the difference ∆y becomes also arbitrarily small. Conclusion:
”for arbitrarily small variations δn of the initial conditions the
trajectories are practically the same”. Consequently, chaotic
systems cannot be governed by ODE. In absence of analytic
solutions, graphical and numerical methods, applied by hand
or by computer, may give approximate solutions of ODE and
perhaps yield useful information.
Existence and Uniqueness of Solutions of NLODE:
There are a few methods of solving NLODE analytically;
those that are known typically depend on equation having
particular symmetries. There are no general techniques that
work for all such equations, and usually each individual equa-
tion has to be studied as a separate problem. In absence of
analytic solutions, graphical and numerical methods applied
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tial differential equations [PDE]2 [22, 23]. In this
article to avoid complex mathematical analysis we
only consider chaos generated by NLODE.

In this way, let us recall the definitions of NLODE.
An ordinary differential equation is an equation
containing a function of one independent variable
and its derivatives [15, 16, 19]. The term ordinary is

by hand or by computer, may give approximate solutions of
ODE. One extremely popular is the Runge-Kutta method [20].
NLODE can exhibit very complicated behavior over extended
time intervals, characteristic of chaos. The questions of exis-
tence and uniqueness of solutions of NLODE and PDE are
hard problems and their resolution are of fundamental im-
portance to the mathematical theory [20]. However, if the
differential equation is a correctly formulated representation
of a meaningful physical process, then one expects it to have
a unique solution [18]. Linear differential equations frequently
appear as approximations to nonlinear equations. These ap-
proximations are only valid under restricted conditions. For
example, the harmonic oscillator equation is an approxima-
tion to the nonlinear pendulum equation that is valid for
small amplitude oscillations.
2Partial Differential Equations and Chaos: The
formulation of a physical problems in mathematical
terms often results in a partial differential equation
(PDE) that contains unknown multivariable functions
u(x1, x2, ..., xn) and their partial derivatives [22, 23]
∂u/∂x1, ..., ∂u/∂xn, ∂

2u/∂x1∂x1, ..., ∂
2u/∂x1∂xn and so on.

A PDE for the function u(x1, x2, ..., xn) can be written in an
implicit form:

F

(
x1, . . . , xn, u,

∂u

∂x1
, . . . ,

∂u

∂xn
,

∂2u

∂x1∂x1
,

. . . ,
∂2u

∂x1∂xn

)
= 0, (5)

which must generally satisfy additional conditions, which
are dependent on the nature of the problem. This is the so
called boundary value problem. F can be a linear (LPDE) or
nonlinear (NLPDE) function of u and its derivatives [22, 23].
Common examples of PDE include sound and heat equations,
fluid flow or Navier-Stokes equation, electrostatics, wave equa-
tion, electrodynamics, Laplace’s equation, quantum mechan-
ics, Klein-Gordon and Poisson’s equations and gravitation.
PDE as ODE often model multidimensional systems.
Existence and Uniqueness of Solutions: Although the
issue of existence and uniqueness of solutions of ODE which
has a very satisfactory answer, as seen in Section 2, that is
not the case for PDE. General solutions of ODE involve arbi-
trary constants. Solutions of PDE are much more complicate
because they involve arbitrary functions. A solution of a PDE
is generally not unique: it depends on additional conditions
that must be specified on the boundary of region where the so-
lution is defined. The Cauchy-Kowalevski theorem states that
the Cauchy problem for any LPDE whose coefficients are ana-
lytic in the unknown function and its derivatives, has a locally
unique analytic solution. Although this result might appear
to settle the existence and uniqueness of solutions, there are
examples of LPDE which have no solutions at all.The NLPDE
are more difficult to integrate analytically [22,24]: there are

used in contrast with the term PDE which may be
with respect to more than one independent variable.
Let x be an independent variable, y = (x) a function
of x, and y(n) = dny/dxn the derivative of order n
of the function y(x). An ODE of order n can be
generally written as F (x, y, y′, ..., y(n)) = 0. If x,
y(x) and y(n) are linear functions and F is a linear
function of these functions we say that F is an
ODE without any chaotic solutions (see Footnote 1).
When nonlinear terms are present, F is a NLODE.
In the N-dimensional case it is assumed that the time
evolution of the dynamic of a system is described by
continuous and continuous flux created by ordinary
nonlinear differential equation

dx

dt
= fα[x(t)], (6)

with, x(0) = xo, x, fα (flow equation) are N-vectors
ε Rm, m is the number of degrees of freedom of the
system, fα is explicitly independent of time and α
is a control parameter. Usually it is assumed that
any NLODE can be integrated in the sense that
they are resolved analytically or numerically and
that the solutions obtained are unique. Note that
rigorously in Mathematics, differential equations
can be integrated [28,29] when are manifested the
following features: (a) existence of enough number
of conserved quantities; (b) existence of an algebraic
geometry and (c) ability to give explicit solutions.

almost no general techniques that work for all such equations,
and usually each individual equation has to be studied as a
separate problem. A fundamental problem for any PDE is
the existence and uniqueness of a solution for given boundary
conditions. For LPDE these questions are in general very hard.
It is often possible to obtain analytic solutions as occurs, for
instance, with solitons in hydrodynamics, electromagnetic
waves and non-linear quantum mechanics. Numerical solution
on a computer is almost the only method that can be used for
getting information about arbitrary PDE. A list of NLPDE
is given in reference [23]. As said in ( see Footnote 1), if the
differential equation is a correctly formulated representation
of a meaningful physical process and if a solution can be
found consistently with all the given boundary conditions, it
is accepted without proof that this solution is unique [18].
Simplest Chaotic Partial Differential Equation: As
commented before in spite of extensive investigations it was
not possible to prove, in the general case, the existence of chaos
in infinite-dimensional systems [11,25–27]. However, it was
shown that very simple NLPDE permit chaos [23]. These equa-
tions have the form ∂u(x, t)/∂t = F (u(x, t)), where F (u(x, t))
can consist of derivatives in space but not in time, can con-
tain a constant term, and must contain exactly one quadratic
nonlinearity (e.g., u2 or u.∂nu(x, t)/∂xn, etc...). For instance,
∂u/∂t = −u.(∂u/∂x)−A(∂2u/∂x2)− (∂4u/∂x4) [19–21].
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Figure 1: (a) Periodic time evolution of x, from a numerical
solution of the Duffing equation for parameters β=0.05,
γ=1.0, ω=1.0, F=4.0. (b). Orbit in phase space for the
same solution.

To give a general idea about the chaos theory we
study in details two examples of dissipative chaotic
systems. Thus, in Section (5.1) a dissipative non
linear oscillator and in (4.2) the dissipative motion
of a damped and driven pendulum.

There are, however other illustrative examples of
conservative chaotic systems. We suggest the lecture
of two conservative processes [30], described by the
Hamiltonian formalism, with chaotic solutions. One
is the motion of a particle of mass m in a double
quartic non-harmonic potential (Duffing potential)
governed by the Duffing Hamiltonian:

H(p, x, t) = p2

2m − kx
2 + x4 + Fcos(ωt), (7)

where the oscillating term Fcos(ωt) is a perturba-
tive potential. A didactic approach of this case was
done, for instance, in [30]. The second case is the
conservative motion of a double pendulum seen, for
instance, in reference [31] where are found animation
pictures of the chaotic motion.

Another classical example is the chaos in the solar
system (see, for instance, reference [3]).

4.1. Duffing Equation

A dissipative illustrative case is the motion of a
particle with mass m submitted to a Duffing po-
tential and to a dissipative force β(dx/dt). That
is, the motion is governed by the NLODE (Duffing
equation) [2–4]:

ẍ+ βẋ− x+ γx3 = Fcos(ωt), (8)

The NLODE (8) can only be solved for x using
numerical methods, given the parameters β, k, and
ω.

The motion in the phase space associated with
Eq.(8) can be efficiently studied using the technique

Figure 2: (a) Chaotic time evolution of x, from a numerical
solution of the Duffing equation for parameters β=0.05,
γ=1.0, ω=1.0, F=6.0. (b). Orbit in phase space for the
same solution.

Figure 3: Sensitivity dependence on initial conditions.
Chaotic time evolution of two solutions for the same pa-
rameters of Fig. 2, for initial conditions (x0, x′

0, t0) = (0.0,
0.0, 0.0) for the black solid line and (x0, x′

0, t0) = (0.001,
0.0, 0.0) for the red dashed line.

invented by Poincaré, named Poincaré sections, illus-
trated in Fig. 4 and 5. First is constructed a 3-dim
phase space with orthogonal axis (x, y, z), where
y = dx/dt′ and z = ωt′ and second, are taken paral-
lel planes (y, x) orthogonal to the axis z distant one
of the other by a given interval ∆z (see Fig.4(a)).
These planes, or Poincaré sections, are used to drawn
a stroboscopic map of the flow. This name is given
because such map consists in observe the system in
discrete times tk = n/ω (n = 1, 2, . . . , n). Taking
for t = 0 the initial values x(0) = xo and y(0) = yo
we integrate numerically Eq.(8) up to the instant t1
determining the point A1 =[x(t1), y(t1)] of the path.
These values are now taken as new initial values to
calculate the next point A2 =[x(t2), y(t2)] for t2 and
so on. Note that the calculated path is a continuous
curve. The calculated path in the phase space (x,
y, z) pierces the planes (stroboscopic sections) as
a function of speed (y = dx/dt), time (z = n/ω)
and the coordinate x , according to Fig. 4 (a). The
points on the intersections are labelled as A1, A2
and A3, etc. This set of points Ai forms a pattern
(stroboscopic map) when projected on the plane (y,
x) (see Figs. 4(b) and (5). Poincaré realized that
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e1309-6 Deterministic Chaos Theory: Basic Concepts

Figure 4: Technique invented by Poincaré to represent the
phase space diagrams. The parallel planes are stroboscopic
sections of the motion. The path pierces these planes at
the points A1, A2, A3. (b) Points A1, A2, A3, projected
on the plane (x, y).

the simple curves represent motion with possibly
analytic solutions, but the many complicated, ap-
parently irregular, curves represent chaos.

Now let us analyze results seen in Fig.1 (a). The
displays x versus time t when transient effects have
died out. The value ε=4.0 shows a simple periodic
motion (only one vibrational frequency), but the re-
sults for ε=6.0 is not periodic Fig.2 (a). In Figs.1 (b)
and 2 (b), we observe the phase-space plot, namely,
y = dx/dt versus x [6]. These results indicate the
beautiful and surprising behavior obtained from non-
linear dynamics: the motion is periodic for ε=4.0,
but chaotic for ε=6.0.

In Fig.6 is displayed the stroboscopic map, for
F=6.0. This Poincaré section represents a chaotic
motion: the system never comes back to the same
position (x, y) after z goes through multiples of z =
n/ω. The illustrated motion presents a complicated
variation of points expected for the chaotic motion
(with a period T → ∞). In these cases we have
aperiodic motions which is a characteristic of the
deterministic chaos [32].

Finally, we remark that only for dissipative sys-
tems there are set of points (attractors) or a point
on which the motion converges. In chaotic motion,

Figure 5: Illustration of the stroboscopic technique where
are shown the intersections of the path with the Poincaré
section.

Figure 6: Chaotic attractor of Duffing equation obtained
for parameters β=0.05, γ=1.0, ω=1.0, F=6.0.

nearby trajectories in phase space are continually
diverging from one another following the attrac-
tor. This effect is shown in Fig. 3, for two motions
obtained for the same parameters but with two
different neighbor initial conditions. Due to these
attractors, named strange or chaotic attractors, the
motions in the phase space are necessarily bounded.

The attractors create intricate patterns, folding
and stretching the trajectories must occur because
no trajectory intersects in the phase space, which is
ruled out by deterministic dynamical motion [6]. The
figures reveal a complex folded, layered structure of
the attractors. Amplifying figure we would note that
the lines are really composed of a set of sub lines.
Amplifying a sub line we would see another set of
sub lines and so on . . . verifying that the strange
attractors usually are fractals [3, 31,33].
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Table 1: Damped and driven pendulum dimensionless vari-
ables and parameters.

Variables and parameters

Damping coefficient
(
c = b

ml2ωo

)
Driving force strength

(
F = Nd

ml2ωo
= Nd

mgl

)
Dimensionless time

(
t′ = t

to
= t

√
g

l

)
Driving angular frequency

(
ω = ωd

ωo
= ωd

√
l

g

)

4.2. Chaos in damped and driven pendulum

Another example of one-dimensional nonlinear mo-
tion is the one described by the damped and driven
pendulum around its pivot point shown in Fig.7 [1].

The torque τ around the pivot point can be writ-
ten as

τ = I
d2θ

dt2
= −bdθ

dt
−mglsin(θ) +Ndcos(ωdt), (9)

where I is the moment of inertia, b the damping
coefficient and Nd is the driving force of angular
frequency ωd. Dividing Eq. 9 by I = ml2 results the
nonlinear equation

d2θ

dt2
= −

(
b

ml2

)(
dθ

dt

)
− g

l
sin(θ) + Nd

ml2
cos(ωdt).

(10)
If we want to deal with Eq.(10) with a computer

it is more convenient to use dimensionless parame-
ters. So, let us divide Eq.(10) by ω2

o=g/l and define
the dimensions less parameters: time t′ = t/to with
to = 1/ωo and driving frequency ω′ = ωd/ωo. The
new dimensionless variables and parameters are pre-
sented in Table 1:

Figure 7: Damped and Driven pendulum with length l.

Using the variables and parameters defined in
Table1, we verify that Eq.11 becomes,

d2θ

dt′2
= −c

(
dθ

dt′

)
− sin(θ) + Fcos(ωt). (11)

Defining y = dx/dt and z = ωt, the second-order
non-linear differential equation (11) is substituted
by a system of two first order-differential equations:

y = dx

dt′
(12)

dy

dt′
= −cy − sin(x) + Fcos(z) (13)

Integrating numerically Eq. (12) and (13), we
find periodic and chaotic attractors which depend
on the chosen parameters and initial conditions. As
an example, in Fig. 8 we present the only three
periodic oscillations (represented by blue, red, and
green lines) that are obtained by a specific choice of
parameters, for all possible initial conditions. These
solutions correspond to three different periodic at-
tractors.

Furthermore, to show the attractor dependence
on initial conditions, we present in Fig.9 the param-
eter space obtained by a grid of initial conditions.
For each initial condition we obtain the numerical
solution and identify the corresponding atractor, as-
sociated with one of the three lines shown in Fig.8,
and represent it in Fig.9 as a point with the same
color used in Fig.8. Figure 9 (a) is denominated
basin of attraction of teh solutions of Eq. (7) [32].
The successive amplifications of the basin of attrac-
tion, shown in Fig.9 (b), (c) and (d), indicate the
basin of attraction fractality.

5. Mapping

In some cases it is very difficult to study the evo-
lution of a nonlinear system integrating their dif-
ferential equations. Sometimes it is also difficult to
construct an exact nonlinear mathematical model to
study physical system. In these cases it is possible to
get a good description of the chaotic process using
an iterative algebraic model named mapping. To un-
derstand the origin of this model let us assume that
the motion of a system is described by nonlinear
first-order differential equations of the form [8]

dx

dt
= f(x), (14)
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Figure 8: Three different numerical periodic solutions ob-
tained for the damped driven pendulum with distinct initial
conditions and the same parameters c = 0.2, F = 1.67,
ω = 1.0.

Figure 9: (a) Basin of attraction of the damped driven
pendulum solutions for the same parameters of Fig. 8 (b),
(c) and (d) Successive amplifications of the previous figure
revealing the basin of attraction fractality.

Figure 10: Trajectory of the motion piercing Poincaré sec-
tion

∑
R. The right figure shows only the points xn, xn+1

e xn+2 on
∑

R.

where x and f(x) are explicitly independent of time
and that the motion is represented in Poincaré sec-
tion

∑
R in Fig. 5.

The Poincaré map is found by choosing a point
xn on

∑
R and integrating Eq. (14) to find the next

intersection xn+1 of the orbit with
∑
R. In this way

we construct the map xn+1 = f(xn).
In a few words, denoting by n the time sequence

of a system and by x the physical observable of this
system we can describe the progression of a nonlinear
system at a particular moment by investigating how
the (n + 1)th state depends on the nth state. The
evolution n→ n+ 1 can be written as a difference
equation using a function f(α, xn) as follows

xn+1 = fα(xn), (15)

where α is a model dependent control parameter,
α and x are real numbers. The function falpha(xn)
generates the value xn+1 from xn and the collec-
tion of points generated is said to be a map of the
function itself. The difference equation (14), which
is an evolution equation in the Poincaré section is
considered a milestone in the field of nonlinear phe-
nomena. Note that n must be iterated from n = 1
up to N >> 1.

5.1. Logistic Equation and Logistic Map

There are innumerous chaotic systems studied with
the mapping approach. Famous examples are the
map models for ecological and economic interactions:
symbiosis, predator prey and competition [34, 35].
Malthus, for instance, claimed that the human pop-
ulation p grows obeying the law [34]

dp

dt
= kp. (16)
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Verhulst [35] argued that the population grow has
inhibitory term ap2 so that Eq. (16) is actually given
by a nonlinear equation, called logistic function

dp

dt
= kp− ap2, (17)

which shows that the population tends asymptoti-
cally to the constant k/a.

One century later, indicating the population by
x the differential equation (17) was substituted by
the logistic equation [34,35]

xn+1 = αxn(1− xn), (18)

where 0 < α < 4 in order to assure that 0 < xn < 1.
Note that the Eq. (18) must be calculated (iter-

ated) from n = 1 up to the cycle n >> 1. An n cycle
is an orbit that returns to its original position after
n iterations. In reference [1] are presented logistic
maps of xn+1 as a function of xn showing that x
assume one stable value and only two discrete values
for α values in the interval 2.8-3.1, characterizing a
periodic motion.

A more general view of the evolution can be ob-
tained plotting a bifurcation diagram [1, 34, 35] (see
Fig. 11) where the xn is calculated numerically after
many 1nteractions to avoid initial effects is plotted
as a function of the parameter α [1].

Figure 11: (a) Bifurcation diagram xn as function of α
for logistic equation map (2.8 < α < 4.0). (b) Lyapunov
exponentes λ as a function of α.

Analyzing this figure we verify that for 2.80 <
α < 3.00 there is a stable population (the period
is one cycle; xn+1 = xn). At α = 3.1 we see a bi-
furcation (because of obvious shape of the diagram)
where there is a period doubling effect (xn+2 = xn):
x begins to oscillate periodically between 0.558 and
0.765. At α = 3.45 there are two different points of
bifurcation: now there appear four possible periodic
oscillations. The bifurcation and period doubling
continues up to an infinite number of cycles near
3.57. Chaos (black regions) occurs for many of α
values between 3.57 and 4.0, but there are still win-
dows of periodic motions (white region). Detailed
description of these regions can be seen, for instance,
in references [34, 36], where is also shown a cobweb
diagram of the logistic map showing chaotic be-
havior for most values of α > 3.57. The special
case of r = 4 can in fact be solved exactly [10], as
can the case with α = 2; however the general case
can only be calculated numerically. For α = 4 is
xn = sin2(2nθφ) where the initial condition parame-
ter θ is given by θ = (1/φ)arcsin(x1/2

o ). For rational
θ after a finite number of iterations xn maps into a
periodic sequence. But almost all θ are irrational,
and, for irrational θ, xn never repeats itself-it is
non-periodic. This solution equation clearly demon-
strates the two key features of chaos stretching and
folding: the factor 2n shows the exponential growth
of stretching, which results in sensitive dependence
on initial conditions, while the squared sine function
xn keeps folded within the range {0, 1}.

5.2. Hénon Map

Another example is the bidimensional dissipative
Hénon map given by the equations

xn+1 = a+ byn − x2
n (19)

yn+1 = xn, (20)

where the parameters a and b are the control pa-
rameters [26].

Examples of numerical solutions of Eq. (19) and
(20) are in Fig. 12, which shows a periodic and
a chaotic attractors, obtained, respectively, for (a)
a = 1.45, b = 0.2 and (b) a = 0.2, b = 1.48.

To show how the numerical solutions depend on
the control parameters, we present in Fig. 13 (a)
the bifurcation diagram of Eq. (19) solutions for
a fixed a and 1.42 < b < 1.48. An interval with a

DOI: http://dx.doi.org/10.1590/1806-9126-RBEF-2016-0185 Revista Brasileira de Ensino de F́ısica, vol. 39, nº 1, e1309, 2017



e1309-10 Deterministic Chaos Theory: Basic Concepts

Figure 12: Examples of periodic and chaotic attractors of
the Hénon map for the parameters the attractors depend
on the control parameters.

Figure 13: (a) Bifurcation diagram xn as a function of a
for the Hénon map. (b) Lyapunov exponents λ as a function
of α and b=0.2.

period 5 attractor can be observed in Fig. 13. In the
parameter space of Fig. 14 (a) we indicate the period
5 window in the parameter space. The amplification
in Fig. 13 (b) shows better the same periodic window.
Such windows are also called shrimps [37] and have
been observed in several dynamical systems [38, 39].

6. Lyapunov Exponents

The nonlinear terms of the differential equations
amplify exponentially small differences in the initial
conditions. In this way the deterministic evolution
laws can create chaotic behavior, even in the ab-
sence of noise or external fluctuations. In the chaotic
regime it is not possible to predict exactly the evo-
lution of the system state during a time arbitrarily

Figure 14: (a) Parameter space for the Hénon Map. Peri-
odic windows are in black. White points represent parame-
ters with chaotic attractor. In gray is a periodic-5 window.
(b) Amplification of a.

long. This is the unpredictability characteristic of
the chaos. The temporal evolution is governed by a
continuous spectrum of frequencies responsible for
an aperiodic behavior (see, for instance, 4). The mo-
tions present stationary patterns, that is, patterns
that are repeated only non-periodically [2, 3]

Lyapunov created a method [1–3, 34] known as
Lyapunov characteristic exponent to quantify the
sensitive dependence on initial conditions for chaotic
behavior. It gives valuable information about the
stability of dynamic systems. With this method it
is possible to determine the minimum requirements
of differential equations that are necessary to create
chaos (see footnote 2). To each variable of the system
is a Lyapunov exponent. Let us study the case of
systems with only one variable [1] that assume two
initial states xo and xo + ε, differing by a small
amount ε. We want to investigate the possible values
of xn after n iterations from the two initial values.
The difference dn between the two xn values after n
iterations (omitting for simplicity the subscript α)
is given approximately by

dn = f(xn + ε)− f(xn) = εexp(nλ), (21)

where λ is the Lyapunov exponent that represents
the coefficient of the average exponential growth per
unit of time between the two states. From Eq.(21) we
see that if λ is negative, the two orbits will eventually
converge, but if positive, the nearby trajectories
diverge resulting chaos. The difference d1 between
the two initial states is written as

d1 = f(xo + ε)− f(xo) ≈ ε
(
df

dx

)
x0

. (22)

Now, in order to avoid confusion that sometimes
is found in the chaotic literature, we remember that

xn+1 = f(xn) = f(f(xn−1)) = f(f(f(xn−2))) =
... = f(f(f(...(f(xo))))), (23)
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that also is written as

xn+1 = f(xn) = fn(xo), (24)

where the superscript n indicates the nth iterate of
the map.

After a large number n of iterations the difference
between the nearby states, using Eq. (21) and Eq.
(23), will be given by

dn = f(xn + ε)− f(xn) = fn(xo + ε)− fn(xo)
= εexp(nλ). (25)

Dividing Eq. (23) by ε and taking the logarithm
of both sides, results

ln
{[
fn(xo + ε)− fnxo

ε

]}
= ln[exp(nλ)] = nλ.

(26)
Taking into account that ε is small we obtain from

Eq. (24),
λ(xo) = 1

n
ln
∣∣∣∣dfn xodxo

∣∣∣∣ . (27)

Since fn(xo) is obtained iterating f(xo) n times
we have fn(xo) = f(f((f(xo))), that is, fn(xo) =
f(fn−1(xo)) = f(fn−1(fn−2(xo))) =, where xi =
fi(xo) is the result of the ith iteration of the map
f(x) from the initial condition xo. So, using the
derivative chain rule we get

dfn
xo
dxo

=
{
dfn(xn−1)

dxo

}{
dfn(xn−2)

dxo

}
. . .

{
dfn(xo)
dxo

}
. (28)

Thus, for ε→∞ we get, using Eq. (25) and Eq.
(26),

λ(xo) = lim→∞
( 1
n

)
ln
∣∣∣∣∏ df

xi
dxo

∣∣∣∣
= lim→∞ 1

n
ln
∣∣∣∣df(xi)
dxo

∣∣∣∣ , (29)

where xi = fi(xo). In the lim n→∞ the Lyapunov
exponent becomes independent of the initial condi-
tion xo. This occurs because when is done an infinite
numbers of iterations. the attractor is entirely cov-
ered by x(t), and it does not matter the initial point
xo. As in practice n are large, but finite numbers,
we calculate λ for different initial conditions and
take an average of these values.

From Eq. (21) we verify that if λ is negative,
the two orbits will eventually converge; but if λ is

positive, the nearby trajectories diverge resulting
chaos. From Eq. (23) we see that at the bifurcation
λ = 0 because |df/dx| = 1 (the solution becomes
unstable). When df/dx = 0 we have λ = −∞ (the
solution becomes super stable).

The λ estimation using simply the flow equations
(6), (8) and (3), that is, without maps, are in gen-
eral difficult because one has to deal with solutions
of NLDE and analytic calculations. This kind of
calculation for the damped and driven pendulum is
seen, for instance, in reference [1]. Using maps these
calculations become easier. This is shown in what
follows for logistic map and triangular map.

6.1. Lyapunov exponents for logistic map

According to Eq. (25) or Eq. (19) to obtain λ are
used the iterated functions fn(xo). For the logistic
map we have the logistic equation (18).

As an example, the second order iterated function
f2(x) is given by f2(x) = f(f(x)) = f(αx(1−x)) =
α(f(x)(1− f(x))) = α2x(1− x[1− αx(1− x)].

So, to get λ(xo) we can continue to iterate f(x)
up to n >> 1 and use Eq. (25) or use Eq. (26)
taking into account f(xi), with i = 1, 2, . . . , n, re-
membering that f(xi) = fi(x).

In reference [36, 40] are seen cobweb plots
(web diagrams) or Verhulst diagrams that are
graphs that can be used to visualize successive
iterations of the function f(x). In particular ,
the segments of the diagram connect the points
(x, f(x)), (f(x), f(f(x))), (f(f(x)), f(f(f(x)))).
The diagram is so-named because its straight lines
segments anchored to the functions x and f(x)
resemble a spider web. The cobweb plot is a visual
tool used to investigate the qualitative behavior
of one-dimensional iterated functions such as the
logistic map. With this plot it is possible to infer
the long term status of an initial condition under
repeated application of a map.

In Fig. 11 are shown the Lyapunov exponents λ
calculated numerically as a function of the parame-
ter α for the logistic map x seen in Fig. 6.

6.2. Lyapunov exponents for triangular
map

In the particular case of a triangular map [8, 31]
λ can be calculated analytically. This map, repre-
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sented in Fig. 15, obey the following equations:

xn+1 = 2βXn, 0 < x ≥ 0.5
xn+1 = α(1− xn), 0.5 < x < 1, 0 < β ≥ 1.(30)

Equations (30) can be rewritten as xn+1 = f(xn),
where the function f(x) is given by

f(x) = β[1− 2|0.5− x|]. (31)

The nth application on 2βx of the first region
0 < x < 0.5 give fn(x) = (2β)nxn.

The maximum value of fn(x) is βn at the point
x = 2−n. By symmetry the next point of minimum
must be 2.2−n and of maximum at 3.2−n and so on.

This implies that |fn(x)/dx| = (2β)n for the two
regions. Taking into account Eq. (25) we get

λ(xo) = 1
n

∣∣∣∣df(xo)
dxo

∣∣∣∣ = ln(2β). (32)

Consequently, there is chaos only for β > 0.5,
since λ > 0.

7. Turbulent Processes

As usually seen in basic physic courses [4, 41], tur-
bulence is originated from studies of fluid motion
in classical mechanics. The general equation of mo-
tion for a viscous fluid is given by the Navier-Stokes
nonlinear partial differential equation (NLPDE)

∂v

∂t
+ (v.grad)v = −grad(P )

ρ
grad(φ) + η

ρ
lapl(v),

(33)
where v(r, t) is the velocity of the fluid at point
r, P is the pressure, ρ the density of fluid, φ(r)

Figure 15: Triangular map.

the gravitational potential and η the viscosity. This
equation is a miracle of brevity, relating a fluid’s
velocity, pressure, density and viscosity [20]. Since
Eq. (33) is a NLPDE, it is not submitted to any
general method of solution (see Footnote 2).

Laminar flow occurs for very small Reynolds num-
ber Re = νLρ/η << 1 [17,20], where ν is a typical
fluid velocity and L is some characteristic length
in the flow. In these conditions Eq. (33) can be
approximated by a linear partial differential equa-
tion (LPDE) and all elements of volume of the fluid
describe well defined trajectories r = r(t). Since
there are an infinite number of elements of volume
δV the resulting LPDE has an infinite number of
degrees of freedom which is a characteristic of the
PDE (see Footnote 2). For Re >> 1 the nonlinear
effects become dominant being responsible for the
phenomenon called turbulence. In these conditions
the flux becomes disordered: the trajectories of the
fluid elements δV are irregular and develop eddies,
ripples and whorls. In spite of this yet there is some
sort of order found within the disorder or turbu-
lence which could be described as self-similar or
fractal [25]. An open problem is to find a mathe-
matical formalism able to describe this disordered
state [25–27].

Turbulence in fluid dynamics is being understood
in infinite dimensional phase space under the flow
defined by the Navier-Stokes equation. We have seen
that in the finite dimensional phase space physical
systems can be described with very good precision
by LODE and NLODE that can solved exactly or
numerically. They can in principle reveal all detailed
structures of the dynamical systems. Turbulence in
fluid mechanics is generated by a NLPDE anchored
in an infinite dimensional phase space. Is turbulence
a chaotic process? Up to nowadays it is well-known
that the theory of chaos in finite-dimensional dynam-
ical systems has been well-developed. Such theory
has produced important mathematical theorems and
led to important applications in physics, chemistry,
biology, engineering, etc [17].

Note that, in the contrary, theory of chaos in PDE
has not been well-developed. In terms of applica-
tions, most of important natural phenomena are
described by linear and nonlinear partial differential
equations (wave equations, Yang−Mills equations,
Navier−Stokes ,General Relativity, Schrȯdinger equa-
tions, etc) (see Footnote 2). In spite of extensive
investigations it was not possible to prove, in the gen-
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eral case, the existence of chaos in infinite-dimensional
systems [10,17,18,20].

Among the NLPDE there is a class of equations
called soliton equations that are integrable Hamilto-
nian PDE and natural counterparts of finite-dimensional
integrable Hamiltonian systems [10]. Many works
have also been developed investigating the existence
of chaos in perturbed soliton equations [20,27].
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A 376, 1290 (2012).

[40] S. Strogatz, Non-Linear Dynamics and Chaos: With
Applications to Physics, Biology, Chemistry and En-
gineering (Perseus Books, New York, 2000).

[41] E.W. Weisstein, Web Diagram. MathWorld A Wol-
fram Web Resource, available in http://mathworld.
wolfram.com/WebDiagram.html, acess: July 29,
2016.

DOI: http://dx.doi.org/10.1590/1806-9126-RBEF-2016-0185 Revista Brasileira de Ensino de F́ısica, vol. 39, nº 1, e1309, 2017

arXiv:1103.0420
http://www.math.missouri.edu/~cli/Legacy.pdf
http://www.math.missouri.edu/~cli/Legacy.pdf
http://arxiv.org/abs/1104.1662
http://arxiv.org/abs/1104.1662
http://arxiv.org/ftp/nlin/papers/0605/0605029.pdf
http://arxiv.org/ftp/nlin/papers/0605/0605029.pdf
http://mathworld.wolfram.com/WebDiagram.html
http://mathworld.wolfram.com/WebDiagram.html

	Introduction
	Definition of Deterministic Systems and Chaos
	Random or Stochastic Process
	Deterministic Chaos
	Duffing Equation
	Chaos in damped and driven pendulum

	Mapping
	Logistic Equation and Logistic Map
	Hénon Map

	Lyapunov Exponents
	Lyapunov exponents for logistic map
	Lyapunov exponents for triangular map

	Turbulent Processes

