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Living-dead creatures are recurrent in various folk myths and recently became an icon of popular culture. The
“zombie-ism” is usually caused by an infectious-like disease that has no cure and ultimately inflicts most of the
human population, leading to a Zombie Apocalypse. In this work, we propose an epidemiological model for a
zombie outbreak. By introducing an infection parameter, we show that human survival is possible in certain
scenarios. Furthermore, our model allows for three distinct dynamical regimes, only one of which accounts for the
full blown Zombie Apocalypse. Our results are obtained both for a fully connected time continuous model and for
a stochastic individual based approach.
Keywords: Zombie dynamics, Infectious diseases, Numerical modelling, Discrete model.

1. Introduction

The fear of living-dead creatures seems to be univer-
sal in the human imagination. Many different cultures
(e.g. Vikings, Middle-eastern, African, Caribbean...) de-
veloped, independently, beliefs in characters that were
able to rise from the dead and terrorize living people,
either in dreams or in real life [1, 2].

Nowadays, the term “zombie” [3], widely propagated in
literature [4, 5], games [6, 7] and cinematography [8–10],
refers precisely to the idea of creatures without self-
control, guided by a rampant hunger for human flesh.

From the etymological viewpoint, this word comes from
the Haitian folk myth, where it was believed that powerful
sorcerers (called bokors) would be able to reanimate
corpses, turning them into slaves devoid of soul [2].

The modern zombie, however, is very different from
its original, folkloric counterpart. Current media depicts
zombies with a more science-inspired approach, treat-
ing the “zombie-ism” as a disease-like condition [1, 6, 9],
usually with no cure.

This may take many forms, from a general condition
afflicting all people after death, as in [5], to a contact-
based infection, where only people killed by zombies
become one [4], and even a spreading virus that kills the
host and turns it into a zombie, as depicted in [9].
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It is a common theme in fiction to discuss the events
of a “Zombie Apocalypse” [1,9], a situation in which the
zombie condition completely overwhelms society’s means
to contain it, turning most of the human population into
zombies.

In recent years, there have been many attempts to
describe this scenario with increasing levels of scientific
rigor. Based on epidemiological models such as SIR or
SIS [11,12], that have been successfully adapted in the
past to describe other problems [13–15], there have been
efforts in the direction of formal population interaction
models for zombies [16–18]. The model proposed in [16],
that pioneered this research topic from this point of
view, describes the Living-Zombie conflict via a three
agent population model. A system of coupled differen-
tial equations describing the evolutions of Susceptible,
Zombie and Removed individuals is presented as a basic
model for zombie infection, from which equilibrium and
stability are determined. The outcome is illustrated by
numerical solutions. This model has been further applied
in [17, 18]. Other models, considering different aspects
such as emotional responses, have also been put forward
in [19,20].

A recurring phenomenon in these models is the fatal-
istic view that a Zombie Apocalypse is inevitable. We
propose a model in which this is not always the case. By
introducing an infection parameter modelling the direct
resurrection of Living as Zombies, we allow for the Zom-
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bies killed by conflict to be permanently removed from
the dynamics. With this parameter, not present in previ-
ously described models, we find cases in which human
survival is possible. We present two different approaches
for this idea: a differential- equation-based model and a
discrete Monte Carlo agent-based model.

In the next section, we present the rules that lead to
the proposed set of differential equations for the Living-
Zombie interaction. From this, we obtain the equilibrium
conditions and recover previous results. Following, the
different dynamical regimes of the model are described
and illustrated by numerical results. The rules for the
discrete model are then presented and the outcomes
are analyzed analogously. We remark the differences be-
tween survivability regions obtained for both models. We
present our final remarks in the conclusion.

2. The Model and Equilibrium
Conditions

The model proposed here describes the dynamics of a
two-species population: the Living one (L), which has
given birth and death rates, as in usual population dy-
namics models, and interacts violently with the Zombie
one (Z). This interaction may be favorable to the first
species, resulting in the death of Zombies, or to the latter,
leading to the transformation of individuals from the first
species to the second. Besides interaction, the Zombie
population may grow through the death of infected Liv-
ing individuals. Non-infected individuals that perish and
Zombies killed by interaction are labeled as Deceased
(D) and do not contribute to the dynamics.

Figure 1 illustrates the rules of the dynamics. Birth
and natural death rates are given by the parameters α
and β, respectively. Following the same lines discussed
in Chapter 3 of [20], we choose linear birth and death
rates in our system of differential equations. In a dynamic
governed exclusively by these two parameters, we have
exponential solutions with effective growth rate being the
difference between them. That is, for β > α, the popula-
tion goes to zero and becomes extinct. If α > β, then we
have an indefinite expansion of the population. While for
α = β, the population size remains the same, although
this equilibrium situation is unstable. Furthermore, in
this work we assume that α ≤ 1, which implies that, in
a unit time step, the Living population will not increase

Figure 1: Schematic representation of the model for the system
dynamics.

more than the existing population. The occurrence of
Living-Zombie encounters is assumed to be proportional
to the product of the two populations. The rate at which
Zombies are generated through interaction is given by
the parameter γ, whilst the rate at which they are killed
by interaction is given by δ. The meaning of these last
parameters motivate the naming Living strength, for the
latter, and Zombie strength, for the former. Finally, we
introduce an infection parameter ρ, accounting for the
fraction of Living that dies due to natural causes and
has contracted the “Zombie condition”.

The resulting equations for the evolution of the popu-
lation, including the Deceased, are

L̇ = (α − β)L − γLZ ,

Ż = ρβL + (γ − δ)LZ , (1)
Ḋ = (1 − ρ)βL + δLZ .

According to these rules, the equation for the Deceased
is decoupled from the (L, Z) evolution.

Given the pair of equations governing the evolution
of the Living-Zombie population (first and second equa-
tions in (1)), it is possible to analyze the stability of the
dynamics. The first step towards this is to obtain the
fixed points of the system.

One trivially finds that L = 0 is a set of fixed points
for any value of Z and the parameters. This scenario
corresponds to a “Zombie Apocalypse”, where the Living
species is extinct and the Zombie population ceases to
grow, similar to the ’doomsday’ equilibrium of [16].

There is a second set of fixed points for any L 6= 0,
γ 6= 0 and γ 6= δ at

Z∗ = α − β

γ
= ρβ

δ − γ
. (2)

This set is non-hyperbolic. Note that only the cases with
δ > γ give non-negative values for Z∗. The value of Z∗

defines two regions of distinct behaviour in which the
Zombie population remains constant: while in one region
the Living population grows, in the other it decreases.
The criteria defining these two behaviours are

Zc = ρβ

δ − γ
and α − β

γ
<

ρβ

δ − γ
→ L̇ < 0 , (3)

Zc = ρβ

δ − γ
and α − β

γ
>

ρβ

δ − γ
→ L̇ > 0 . (4)

From these conditions, we can infer that coexistence
of the two species - Living population either constant or
growing along with constant positive Zombie population
- is only possible if ρ and β are non-zero, that is, non-
vanishing infection and Living death rates are mandatory.
Also, to guarantee the finiteness and positiveness of Zc,
the Living strength parameter δ must be strictly greater
than the Zombie strength parameter γ, which means that
birth rate alone does not seem to be enough to placate
the Zombie apocalypse.
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In Figure 2, we show the parameter sub-space where
β = 0.2 and γ = 0.6 for different values of ρ. The hy-
perbolas represent the case of Competition (2), in which
both populations stabilize. For each value of ρ, the region
between the curves represents the case of Apocalypse (3),
in which the Living population asymptotically goes to
zero, stabilizing the Zombie population. The remaining
region corresponds to Supremacy (4), where the Living
population grows without bound. Note that, for greater
values of ρ, the Supremacy region becomes ever narrower,
but still existent in the worst-case scenario of generalized
infection (ρ = 1.0) amongst all Living. As stated before,
the region with δ < γ, delimited by the vertical line in 2,
yields a negative value for Zc, therefore Competition is
not possible here.

Note that for regimes in which there is no birth nor
natural death (α, β = 0), this model reduces to the
SZR model presented in [17]. It is apparent that, with
these parameters, the only set of fixed points are those
in which either L = 0 or Z = 0, therefore there can be
no coexistence. Figure 3 illustrates the behaviour of the
model in this setting.

3. Dynamical Regimes of the Model

In order to further investigate the elements of the
model, we must now proceed to the analysis of actual
solutions. As stated above, there are three possible out-
comes: Competition, in which both populations do not
vanish nor present unbounded growth; Apocalypse, in
which the Living population goes to zero; Supremacy,
in which the Living population grows without bounds.
These behaviours are illustrated, respectively, in Figures
4, 5 and 6.

In each figure, we present two different sets of parame-
ters and initial conditions, leading to the same qualitative

Figure 2: α = α(δ) as a solution of equation (2) for different
values of ρ. The horizontal line represents the fixed value of
β = 0.2 and the vertical one corresponds to γ = 0.6.

Figure 3: Numerical solution to equations (1) with parameters
α = 0, β = 0, γ = 1, δ = 0.6. Initial conditions are L = 199,
Z = 1.

(a)

(b)

Figure 4: Numerical solutions to equations (1) with parameters
α = 0.15, β = 0.1 and ρ = 0.1(a) γ = 0.5, δ = 0.6 and initial
conditions L = 9, Z = 1; (b) γ = 0.005, δ = 0.006 and initial
conditions L = 70, Z = 20. These cases illustrate Competition.
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(a)

(b)

Figure 5: Numerical solutions to equations (1) with parameters
α = 0.145, β = 0.1 and ρ = 0.1(a) γ = 0.5, δ = 0.6 and initial
conditions L = 9, Z = 1; (b) γ = 0.005, δ = 0.006 and initial
conditions L = 70, Z = 20. These cases illustrate Apocalypse.

behaviours. In Figures 4 - 6 (a), Zc = 0.2, therefore initial
conditions were chosen in a such a way to guarantee that
the Zombie population stabilizes at this value. The same
approach was used in Figures 4 - 6 (b), for which Zc = 10.
As stated in [17], we can choose a relevant population
size N and reinterpret L and Z as fractions of N . By
doing this and rescaling the interaction parameters by
γ′ = Nγ and δ′ = Nδ, the equations remain the same,
such that population units are arbitrary.

As observed above, small differences in the parameters
may result in different regimes. Living survivability is
then a matter of obtaining a “proper” set of parameters.
To better represent which sets are favorable, we present
Figure 7, in which the color scale represents, for vari-
ous values of α and δ, the fraction of the populations
difference as an indicator of which regime the dynam-
ics follows. As expected from the fixed point analysis,
the Apocalypse case given by inequality (3) results in
a Living population vanishing asymptotically, thus our
indicator assumes negative values at the end of the nu-
merical solution of equations (1). In the same fashion,

(a)

(b)

Figure 6: Numerical solutions to equations (1) with parameters
α = 0.155, β = 0.1 and ρ = 0.1(a) γ = 0.5, δ = 0.6 and initial
conditions L = 9, Z = 1; (b) γ = 0.005, δ = 0.006 and initial
conditions L = 70, Z = 20. These cases illustrate Supremacy.

for the Supremacy case given by (4), the Living popula-
tion will grow exponentially, resulting in a positive value
for the indicator. These parameters are chosen for be-
ing related to the Living population and not dependant
upon external factors, such as infectability or strength
of Zombies.

From the figure we observe, for fixed β, γ and ρ, two
distinct regimes. These are separated by a narrow region
centered in the curve α = α(δ) obtained from equation
(2). One clearly sees, in this figure, that Living survival
is less likely event, as a larger area is favorable to Zombie
victory. This phenomenon is especially visible when δ < γ,
case in which Zombie victory is guaranteed, regardless
of Living birth rate.

4. Discrete Model

The problem can also be described by an alternative ap-
proach based on Monte Carlo methods, where we consider
interactions in a discrete manner. This is done for various
reasons, among which are the need for a more “realistic”
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Figure 7: Space of parameters α and δ, with β = 0.2, γ = 0.6
and ρ = 0.1. The color scale indicates the value of the fraction
of the populations difference (L − Z)/(L + Z) at t = 106, with
time step 10−4 and initial conditions L = 0.5 , Z = 0.25.

description of the interactions, future implementation of
different dynamical ingredients, as well as observation
of fluctuation effects due to the finite size of systems.
This approach has the added benefit of standardizing the
results with the already existing literature [17].

In the analytical model, the existence of sets of critical
parameters implies sharp transitions between regimes,
which is not expected to be the case in a finite-discrete
model. With the express intent of understanding the
population dynamics behaviour in a “real” system in the
vicinity of these parameters, we propose a simulation
in which each individual is labeled as one of two kinds:
Living or Zombie. Here, L and Z stand for the sum
of all Living and Zombie individuals, respectively. The
remaining parameters in the equations (birth and death
rates, infection and strengths) are treated as probabilities.
From the differential equations, the rate of change of
the population depends on the concentrations of Living
and Zombies. Computationally, these concentrations are
interpreted as the probability of randomly choosing an
individual of a given species amongst the total population.
Thus, the probability of each event is as given:

Birth:P (birth) = P (reproduce ∧ L pick)

= α ·
(

L

N

)
Death:P (death) = P (die ∧ L pick) = β ·

(
L

N

)
Infection:P (infection) = P (be infected ∧ death)

= ρ · β ·
(

L

N

)
(5)

Interaction:P (L success)

= P (L succes ∧ (L, Z) pick) = δ
L · Z

N2

P (Z success) = P (Z succes ∧ (L, Z) pick) = γ
L · Z

N2

where N = L + Z is the total population immediately
before the event.

Given this set of rules, the simulation consists of a
first stage, in which the initial population of Living and
Zombie agents is created, followed by a second stage
that is divided in three steps: interaction, birth and
death/infection. From this point forward, the simulation
is played out in turns, repeating the second stage and
updating itself until either the Living population is zero
or the maximum number of time steps has been reached.

The initial population is set by two parameters: total
initial population (N0) and the initial Living concen-
tration (p0). Each of the N0 individuals are labeled as
Living with probability p0 randomly. At this stage, the
parameters of the dynamics (birth α, death β, infection ρ,
Living strength δ and Zombie strength γ) are also set. It
is worth noting that, even though the same symbols are
used for the parameters in this approach, they have very
different meanings. While in the differential equations
these parameters are rates, they are probabilities in the
Monte Carlo simulation.

The second stage is organized as follows:

• Interaction: Two individuals are randomly chosen
from the total population (N). The interaction
occurs only in the cases for which a Living-Zombie
pair is formed. The success of the individual in the
interaction is related to the parameters δ and γ.
Living success is defined as killing a Zombie and
it happens with probability δ. On the other hand,
Zombie success happens when it converts a Living
into a Zombie, which occurs with probability γ.
Therefore, the possible results of this interaction
are: {(L success, Z success ); (L success, Z fail);
(L fail, Z succes); (L fail, Z fail)}.

• Birth: An individual is randomly chosen from the
total population and, in the case of it being a Living
agent, another Living individual is generated with
probability α.

• Death and infection: An individual is randomly
chosen from the total population and, in the case
of it being a Living agent, death occurs with prob-
ability β. Once death is confirmed, the probability
of the individual being infected and converted into
a Zombie is given by ρ. Otherwise, it is removed
from the dynamics.

We show the averaged evolution of both populations
in Figures 8, 9 and 10 for different sets of parameters.
It is straightforward to note, from Figures 9 and 10,
that some cases related to Apocalypse and Supremacy in
the continuous model have qualitative analogous within
the framework of the discrete, Monte Carlo model. In
Figure 10, the simulation was truncated at 500 time
steps to avoid numerical overflow problems. Not all of
the behaviours observed in the differential equations
have analogues in the discrete model, however. With the
chosen set of parameters, small variations in α (∆α ∼
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Figure 8: Monte Carlo simulation with parameters α = 0.15,
β = 0.1, γ = 0.5, δ = 0.6, ρ = 0.1. Initial conditions are
N0 = 100, p0 = 0.9 and average over 50 realizations. The
simulation was terminated at the maximum number of time
steps t = 3000.

Figure 9: Monte Carlo simulation with parameters α = 0.145,
β = 0.1, γ = 0.5, δ = 0.6, ρ = 0.1. Initial conditions are
N0 = 100, p0 = 0.9 and average over 50 realizations. The
simulation was terminated as the Living population reached
zero.

10−2) may cause a substantial change between regimes,
due to random fluctuations associated with the events
(5). As a consequence, a “coexistence” region, defined as
non-vanishing, stabilized populations, is not observable.

To better explore the regimes contained within the
discrete model, we build, in Figure 11, a diagram in
parameter-space analogous to Figure 7. In this model,
we observe a larger Living survival region. The modified
discretized dynamics, with a probabilistic interpretation
of the parameters, has favored Living survivability. In
the large α, small δ region, Living population increases
rapidly in the early stages, but decreases drastically as
the Zombie population becomes of a comparable size.
With the given simulation ruleset, there is no possibility

Figure 10: Monte Carlo simulation with parameters α = 0.155,
β = 0.1, γ = 0.5, δ = 0.6, ρ = 0.1. Initial conditions are
N0 = 100, p0 = 0.9 and average over 50 realizations.

Figure 11: Monte Carlo space of parameters α and δ by setting
β = 0.2, γ = 0.6 and ρ = 0.1 with 20000 steps. Initial conditions
are N0 = 150, p0 = 2/3. The color scale indicates the fraction
of the populations difference (L − Z)/(L + Z).

of long term Living survival if δ < γ, as in this regime the
Living birth rate cannot placate death by confrontation,
and subsequent conversion. The apparent “coexistence”
in the upper left region is due to finitude of simulation
time and is expected to become narrower as simulation
times increase.

5. Conclusion

In this paper, we presented two different models that
describe the dynamics of a Living-Zombie population.
On one hand we have a continuous model based on
differential equations, in which stability analysis was
performed. On the other, a discrete stochastic model was
introduced in order to better evaluate to what measure
finiteness of the systems affects the outcome. Both models
include a parameter related to infection in a non-violent
situation, allowing for Living-Zombie conversion without
confrontation. The introduction of this parameter, as
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opposed to the model in [16], uncouples the dynamics of
the Deceased, reducing the mathematical formulation to
two dimensions only.

It is worth noting that system (1) is unbalanced in the
sense that the term α · L is not compensated anywhere
in the system. This leads to an evolution equation for
the total population L̇ + Ż + Ḋ = αL(t), which is a
non-decreasing function of t, since α, L ≥ 0. The focus
of the continuous model is on time scales at which the
population grows in a Malthusian way. By assuming
this, we avoid growth rules which are independent of the
instantaneous number of Living, as was proposed by [16]
and several models in [20], and thus remove the issue of
having their spontaneous emergence.

The linear birth is characteristic of a Holling functional
response of Type I and it is used in Lotka-Volterra models.
In the seminal work of Holling [21], the linear birth
rate saturated at some high value of population density.
This constraint has been droped in other works (as in
Lotka-Volterra models). We choose to keep the value
of α independent of L, as we assume that population
size is always far from saturation, which makes sense
in the context of a Zombie infected world. If there are
no zombies and no infection (Z = 0 and ρ = 0), indeed
there are three outcomes:

• α > β, leading to exponentially growing Living
population, as it is the case for World Population
[22]. L only approaches infinity in an infinite time,
far beyond the time scale of our model;

• β > α, resulting in an asymptotically vanishing
Living population, which is expected from a popu-
lation that dies in a higher rate than it reproduces.
Again, we remark that L = 0 is an asymptote. This
behaviour is also seen in [16];

• α = β the system is in an unstable fixed point.
The differential equation modelling represents an
average behaviour of the system, so it is sensitive
to parameter variation. As in the chapter by Munz
in [20], in the absence of zombies, the population is
modeled by a single linear parameter - in our case,
(α − β) -, representing Malthusian growth.

By analyzing our models, we found three different
stationary regimes: Supremacy, Coexistence and Apoca-
lypse. Coexistence is only possible due to the infection
parameter, as it was observed not to be possible in [16,17],
and only in very specific settings. It is important to note
that Supremacy does not imply extinction of the Zombie
population, but rather unbounded growth of the Living
population with a non-zero, nonetheless controlled, Zom-
bie population. That is to be expected, as in this paper
we offer a view of Zombie-ism as an infecto-contagious
phenomenon, and as such, can only be eradicated by ex-
ternal agents capable of reducing the infection parameter
to zero. As long as this parameter is non-zero, all regimes
will always include a non-zero Zombie population.
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