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I present my recollections of what I used to find to be “one or two small points in thermodynamics”, following
Sommerfeld’s famous quote, and review them on the light of present knowledge.
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1. Introduction and motivation

During my student days, I enjoyed the famous quote from
Arnold Sommerfeld [1]: “ Thermodynamics is a funny
subject. The first time you go through it, you don’t
understand it at all. The second time you go through it,
you think you understand it, except for one or two small
points. The third time you go through it, you know you
don’t understand it, but by that time you are so used to
it, that it doesn’t bother you any more”.

In fact, almost every student has found his “one or two
small points”. This may be due to the fact that, in spite
of being “the unique universal science” [2], thermodynam-
ics is populated with various logical and mathematical
contradictions, to the point that - in another famous
quote - the russian mathematician Vladimir I. Arnold
was led to assert that “every mathematician knows it is
impossible to understand an elementary course in ther-
modynamics” [3].
Having written one such course (textbook) myself, I

realized that I succeeded only partially in trying to contra-
dict Arnold’s quote, because, even after the completion
of the second edition [4], at least “two small points” did
remain. The present note is my account of them. The
whole discussion (restricted to the first and second laws,
for the third, see [5]) is elementary, i.e., at the level of
an elementary course in thermodynamics. Classical refer-
ences are [6], [7]. A recent textbook, with a large palette
of interesting applications, including chemistry, is [8].
Although applications are very important, my primary
aim here is to be as precise in the foundations as possible,
remaining in the textbook level.
In a slightly more general context, one might inquire:

why should one try to arrive at a more precise under-
standing of the laws of nature? One reason is that, even
regarding some apparently rather commonplace phenom-
ena, such as darkness at night, the various stages of
understanding may lead to surprisingly new insights:
who would have suspected that, in a deeper, cosmolog-
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ical, sense, this phenomenon is related to the death of
stars ( [9], Chap. 12, p. 249)? In addition, and intimately
related to this issue, there is Lesson III of Arthur Wight-
man in [10]: Distinguish “what you know” from what
you “think you know”. In this same lesson III, it is also
reported that “Arthur insisted: A great physical theory is
not mature until it has been put in a precise mathemat-
ical form”. Concerning thermodynamics, this endeavor
has been achieved by E. Lieb and J. Yngvason in a re-
markable analysis [11], to which I shall have occasion
to refer in the forthcoming sections. Two pedagogical
accounts of their work are [12] and [13].

Section 2 discusses the first small point, and section 3 a
possible solution, as well as the reasons why this solution
remains physically objectionable. Section 4 expands on
the point left in section 3 and suggests that the interplay
with other areas of physics might be necessary for a
better understanding. In section 5, I discuss the second
small point, leaving the very brief conclusion to section
6.

2. A first small point: Clausius’
formulation of the second law

In my student time, Dyson’s article “What is heat?” [14]
was very popular. It began with the sentence “Heat is
disordered energy”. indeed, heat, denoted by Q, provides
the balance of energy in the first law of thermodynamics,
viz.

d̃Q = dU + d̃W (1)

Above, d̃ denote “inexact differentials” and, in (1), for
a given system, U denotes its (internal) energy, and W
the amount of work done by the outside world on it.
An equilibrium state of a simple system will be taken to
be characterized by a point X ≡ (U, V, N), with U the
internal energy, V a work coordinate, e.g., the volume,
and N the particle number. The question of the choice of
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variables in thermodynamics is important: see [15], see
also [16] for a clear exposition.

Reference [14] discusses the example of a bicycle pump:
“Before compression the air atoms are already moving
at random in all directions; in other words, this is a
disordered system, and its energy is in the form of heat,
though we do not feel it, because the air is only at room
temperature. Now, if you pump vigorously, compressing
the air rapidly, it heats up; the pump becomes hot to
the touch. The air has the same disorder it had before,
but more energy. By doing work, you have pushed more
energy into the air, and the observed production of heat
is just the effect of this addition of energy to the pre-
existing disorder.”

The previous description seems to confirm the remarks
by Lieb and Yngvason ( [11], p.7): “no one has ever
seen heat, nor will it ever be seen, smelled or touched”.
Indeed, before pumping, the energy was also in the form
of heat, “although we do not feel it”. The only aspect
distinguishing heat from other forms of energy is the
dependence on the way how the processes in which it
enters are carried out, which is directly inherited from
(1), in case d̃W 6= 0.

Continuing with the textbook conventions, a process
is a transformation C12 = X1 → X2 from a state X1 ≡
(U1, V1, N1) to a state X2 = (U2, V2, N2). I shall be deal-
ing with equilibrium, by which it is meant that a process
consists of an infinite number of “infinitesimal” transfor-
mations, i.e., the limiting idealized case in which each
intermediate stage deviates only “infinitesimally” from
equilibrium. This procedure has been avoided in ( [11],
p.17) by their definition of adiabatic accessibility. There
are processes X1 → X2 for which the amount of work
done by the outside world in going from X1 → X2 is
independent of the manner in which this transition is
carried out: they are called adiabatic. Otherwise, the first
law (1) holds instead, with d̃Q 6= 0 and d̃W 6= 0. If, for
any process on a given system, Q̃ = dU in (1), we say
that we have a heat or energy reservoir, when, instead,
d̃Q = d̃W in (1), one speaks of a work reservoir - two
important idealized systems. We state the second law of
thermodynamics in the Kelvin-Planck form (abbreviated
second law (KP)):

Second law (KP) No process is possible, the sole result
of which is a change of energy of a simple system, with-
out changing the work coordinates, and the raising of a
weight.

The above is the paraphrasing of the usual Kelvin-
Planck formulation of the second law ( [6], [7], [4]) due
to Lieb and Yngvason ( [11], p.49), without using the
concept of heat. This shows that the latter concept may
be avoided completely when restricting oneself to the
second law.
A process C12 = X1 → X2 is possible if it complies

with both the first and second laws. It is reversible if the
process C21 = X2 → X1 is also possible, otherwise it is
irreversible. A cycle is a process X → X, for some state

X: it may be reversible or irreversible. Note that the
definition of irreversibility does not involve the time as
a parameter, i.e., no dynamics is attached to it - which
should be no surprise within the framework adopted here,
which is that of equilibrium thermodynamics.

By further introduction of the Carnot cycle, together
with the model of the ideal gas, one is able to prove
Carnot’s theorem (e.g., [7], 2.2. p.18), leading to the
concept of absolute temperature T ( [7], p.20), and the
formula

Q1

Q2
= T1

T2
(2)

for a reversible cycle, where Q2 is the amount of heat ab-
sorbed at temperature T2, Q1 the amount of heat given
off at temperature T1, and T2 > T1. Further elabora-
tion ( [7], p.24) leads to consider a system traversing a
cyclic process C, exchanging heat with a series of heat
reservoirs at temperatures T1, T2, · · · Tn, Q1, Q2, · · · Qn

being the respective algebraic amounts of heat exchanged,
positive when absorbed, and negative when given off by
the system. Considering, now, the further process Crev,
consisting of n reversible Carnot processes between each
of the n heat reservoirs at temperatures T1, · · · , Tn and a
new reservoir at temperature T0, so designed that, in the
second process, the quantities Q1, Q2, · · · Qn are returned
to the reservoirs at T1, T2, · · · Tn, the composite process
C + Crev will yield the result that the n reservoirs are
left unchanged. Using (2), we obtain from the second law
(KP) (see also [7], p. 24)

Clausius’ Inequality (1)

Q0 = T0

n∑
i=1

Qi

Ti
≤ 0 (3)

with the equality sign in (3) holding if and only if the
process C is also reversible. Taking the limit n → ∞,
whereby any cycle Cy may be approached by a mesh of
Carnot cycles, we obtain∮

Cy

d̃Q

T
≤ 0 (4)

From (4), the concept of temperature as an “integrating
factor” for the improper “heat infinitesimals” d̃Q arises,
as well as the concept of entropy, denoted by S(X) ,
a function of the state X, yielding a second form of
Clausius’ inequality (3):

Clausius’ Inequality (2):
In an adiabatic transformation from the state X1 to

the state X2,
S(X1) ≥ S(X2) (5)

The equality in (5) occurs if and only if the process
C12 = X1 → X2 is reversible.

(5) leads to Clausius’ “sweeping” (in the words of ter
Haar and Wergeland ( [7], introduction, p. xiii.) formula-
tion of the second law:
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Second Law (Cl): The entropy of the Universe rises to
a maximum value.
A drawback of the concept of entropy S(X) is that

it derives from (4), i.e., from the formulation of thermo-
dynamics through the use of differential forms, which
requires differentiability of the various state functions,
and there are points in state-space where differentiability
does not hold, namely, when phase transitions occur (see
the discussion in [11], p.35). The only complete solu-
tion to this problem, as far as I know, is given in the
axiomatic treatment of Lieb and Yngvason. I proceed,
however, with an attempt at a textbook formulation, and
assume that an entropy function has been constructed
in the previous (usual) manner for simple pure states X
(see [15] for this concept), that is, outside multi-phase
regions.
In the textbooks ( [4], [6], [7]), one defines systems

with internal barriers or constrained systems. Consider
a closed system consisting of two subsystems, between
which an entirely restrictive wall (that is, to the estab-
lishment of equilibrium) exists - i.e., it does not allow
any exchange of energy, change of volume or number of
particles. This system is what is called a “constrained
equilibrium”. Assume that the first subsystem is in the
state X1 = (U1, V1, N1), and the second one in the state
X2 = (U2, V2, N2). One defines the entropy of the system
in constrained equilibrium by

S(U1, V1, N1; U2, V2, N2) ≡ S(U1, V1, N1)+S(U2, V2, N2)
(6)
After removal of the wall, it is assumed (see later) that
an equilibrium state X = (U, V, N) is established. Since
further reintroduction of the wall alters nothing whatever
in the subsystems’ equilibrium„ one may also visualize
the equilibrium state (U, V, N) as a special constrained
equilibrium, and one may prove:

Theorem 2.1. Among all constrained equilibria of the
same energy, the true equilibrium state has maximum
entropy, i.e., the function S(U, V, N) is superadditive:

S(U1+U2, V1+V2, N1+N2) ≥ S(U1, V1, N1)+S(U2, V2, N2)
(7)

Furthermore, if the inequality sign in (7) is strict, the
process is irreversible, and the entropy increase ∆S:

∆S ≡ S(U1+U2, V1+V2, N1+N2)−S(U1, V1, N1)−S(U2, V2, N2)
(8)

is a measure of irreversibility.

Proof. Consider the process of removal of the wall be-
tween two subsystems (U1, V1, N1) and (U2, V2, N2), main-
taining the internal energy constant. After the equilib-
rium state (U, V, N) has been attained, couple the system
to a series of reservoirs at temperatures T1, T2, · · · Tn, in
such a way that the compound system performs a cycle,
i.e., returns to the initial state. By the argument preced-
ing (3), this coupling is equivalent to couple the system

to a unique heat reservoir at temperature T0, say; let Q0
denote the amount of heat exchanged with it. By the
second law (KP), we find

Q0

T0
= S(U1, V1, N1) + S(U2, V2, N2) − S(U, V, N) ≤ 0

which is (7). The second assertion follows from the fact
that, if Q0 < 0, work will have been transformed into
heat (energy) without other changes, which is irreversible,
again by the second law (KP).

Together with the process of extensivity, or homogene-
ity of the first degree,

S(λU, λV, λN) = λS(U, V, N) (9)

the property of superadditivity (7) leads to the funda-
mental property of concavity:

S(X) is a concave function of X = (U, V, N), i.e., for
0 ≤ α ≤ 1,

S(αX1 + (1 − α)X2) ≥ αS(X1) + (1 − α)S(X2) (10)

We now make the
Assumption 1
(7), (9) and (10) are the basic properties of entropy,

valid also in the presence of phase transitions, i.e., in
multi-phase regions.
The far-reaching meaning of assumption 1 is due to

the fact (see, e.g., [17]) that a concave function (on an
open set) is only continuous, but not necessarily differ-
entiable: it may exhibit a countable number of points
of (finite) discontinuity, which are thus naturally associ-
ated to phase transitions. They account for the beautiful
theory exposed in [15], essentially due to Gibbs, of multi-
critical points, based on the structure of the boundaries
of convex sets. It is to be emphasized that Lieb and Yng-
vason obtain (10) from their set of axioms, which allow
to construct the entropy function without assumption 1.

The existence of irreversible processes lies, as remarked
in [11], p. 35, at the very heart of thermodynamics. “If
they did not exist, it would mean that nothing is for-
bidden, and there would be no second law”. In a proper
language, this is one of the axioms of [11] ((S1), p. 42),
which is related to Carathéodory’s principle, by Theorem
2.9, p. 35, of [11]. As a brief historical remark, Max Born
was one of the few who recognized the importance of
Carathéodory’s work, already in the early twenties, see
the very readable article by Landsberg [18] and, as a com-
plementary historical paper on the origin of exact and
non-exact differentials in mechanics and thermodynamics,
see [19].

My first “small point” now follows (as revisited on the
light of what I know today). Virtually all real physical
processes are irreversible. Is it possible, in this connection,
to provide at least one concrete, physically reasonable, ex-
ample of an irreversible process, and relate it to Clausius’
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formulation of the second law, in which time is implicit
as a parameter?
The next section is reserved to a possible answer to

this question. For clarity, I divide it into four parts.

3. A possible answer and some
difficulties

3.1. The free adiabatic expansion of the ideal
gas

We now consider N particles of an ideal gas, initially
inside a container of volume V , which is allowed to expand
adiabatically into another container of the same volume
V (for simplicity), in which, originally, vacuum had been
established (Gay-Lussac experiment, [7], p.36). We use
theorem 2.1 with U2 = 0, V1 = V2 = V , N1 = N2 = N ,
and find

∆S = S(U, 2V, N) − S(U, V, N) (11)
For the ideal gas, from the two state equations

1
T

= 3
2k

N

U
(12)

and
p

T
= k

N

V
(13)

with T the absolute temperature and p the pressure, we
find

S(U, V, N) = Ns(u, v) (14)
with u = U

N , v = V
N . From

ds = 1
T

du + p

T
dv (15)

we obtain

s(u, v) = s0 + 3
2k log( u

u0
) + log( v

v0
) (16)

where s0, u0, v0 are constants. By (11) - (16), and the
fact that u is constant in the process, we finally obtain

∆S = kN log(2) (17)

This result is reproduced in most textbooks. Is it physi-
cally reasonable? When we open a valve and let gas rush
into a vacuum, macroscopic motions occur. Although
it may seem “obvious” that the gas will fill the second
container uniformly, when equilibrium is attained, this
is not at all evident! Indeed, why does an inhomogene-
ity at some place in a gas disappear, from a physical
standpoint? Intuitively, we expect that it is the collisions
between the molecules (think of them as billiard balls)
which finally produce a uniform distribution. This intu-
ition is refined in section 4, where it is related to the
property of mixing and K systems. But the molecules of
a free gas do not interact! More precisely, the free gas
is shown there not to satisfy the mixing property. We
have, therefore, not provided a “physically reasonable”
example of an irreversible process, and try again in the
next section.

3.2. The free, adiabatic expansion of a van der
Waals gas outside the saturation region

The simplest model of an interacting gas is the van der
Waals gas (see [7], pp. 4-7, or [4]), which is a caricature
of a hard-core repulsion. It is described by the equation
of state

p = kT

v − b
− a

v2 (18)

where a > 0, b > 0 are parameters, related to the critical
data of the gas. For sufficiently large T , the term a

v2 and
the correction b in (18) may be neglected, and, thus, the
specific heat at constant volume CV is close to the ideal
gas value CV = 3

2 Nk resulting from (12); in the sequel
we assume

CV = constant = C with 0 < C < ∞ (19)

which is a good approximation “sufficiently far” from
the saturation region: (19) is rigorously controllable by
suitable bounds. In this region, differential forms (see,
e.g., [20], p.12) may be used freely. Using (19), we find
immediately, for the reversible process by which the gas
initially occupies the volume Vi = V and expands to the
final volume Vf = 2V , the condition of constant internal
energy

dU = CdT + aN

v2 dv = 0 (20)

from which
dT = −aN

C

dv

v2

The initial temperature T0 (with 0 < T0 < ∞) is fixed by
the initial (constant) energy: U(V, T0) = CT0 − a

Vi
(up

to a constant which we may fix as zero), and we obtain

T = T0 + aN

Cv
(21)

From (20) and (21),

dS = p

T
dV = kN

dv

v − b
− aN

( aN
Cv + T0)v2 dv

from which

S(N, v) = kN log(v − b) + aN

µ
log(1 + µ

T0v
) + const.

(22)
where

µ ≡ aN

C
(23)

Finally, we find

S(N, 2v) − S(N, v) = S1(N, v) + S2(N, v) (24)

where
S1(N, v) ≡ kN log(2v − b

v − b
) (25)

and
S2(N, v) ≡ C log(

1 + µ
2T0v

1 + µ
4T0v

) (26)
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S1 is the Boltzmann “probabilistic term”, which does not
depend on a and tends to (17) as b → 0. S2 independs of
b and tends to zero as a → 0. Thus, S(N, 2v)−S(N, v) →
kN log(2), which is the ideal gas result (17), as expected,
as b → 0 and a → 0. Moreover, S2 may be interpreted as
an “interaction term”, which is strictly positive, because

S2(N, v) > 0 if µ > 0 (27)

It is interesting to observe that the inclusion of in-
teraction leads to a measurable effect, i.e., the cooling
observed in the Gay-Lussac experiment (see (21) and [7],
p. 37).
This exercise becomes much more difficult in the sat-

uration region! There, Assumption 1 leads to the con-
struction of S(U, V, N), by Lebowitz and Penrose [21],
but (19) no longer holds, of course, and the differential
forms, in general, are not well-defined.

The structure of (24), (25), (26) shows that the prob-
abilistic term and the interaction term do not interfere
in the entropy variation function. This is due to the fact
that dynamics, which reduces to the process of lifting
the barrier (or opening the valve), is independent of the
internal energy of the system and hence of the state. This
looks like a drastic approximation, and, indeed, it is! In
the next section, I try to expand on this point.

3.3. Dynamics, or no dynamics, and what to
expect

What is, then, the answer to the question posed at the
end of section 2? A tentative answer is that both examples
in subsections 3.1 and 3.2 are not physically reasonable
dynamically, i.e., if we wish to go on with second law
(Cl), in which time is implicit as a parameter. There are
at least two solutions of this dilemma:

(a.) No dynamics. In this case we have either of two
possibilities:

(a1.) Existence of irreversible processes as a (crucial)
assumption in [11], (S1), p.42, as previously men-
tioned. With it, however, a full theory is developed,
which, in particular, does not use differential forms,
and is thus extendible to multi-phase regions;

(a2.) “concrete” existence of irreversible upon inclusion
of internal barriers (constrained systems) in the
equilibrium formalism, with, however, the use of
differential forms, i.e., excluding multi-phase re-
gions.

It goes without saying that the levels of mathematical
rigor in a1 and a2 are quite different, a2 being at a much
lower (elementary textbook) level.

(b.) Dynamics.

In this case we have “concrete” existence of irreversible
processes, if we make use of the possibility of considering
(as in [4]) a system with internal barriers as a special

example of a nonequilibrium state. Indeed, these bar-
riers are an example of a “sudden” interaction, which
introduces an instantaneous global change in the system
- i.e., the gas expands instantaneously, filling the total
volume uniformly. These interactions contain a “delta
function” in the time variable, which change the energy
by an infinite amount. They are, therefore, physically
inadmissible, but may be regarded as a limiting case of
certain physically admissible interactions, according to
which we expect that the gas will eventually (after a re-
laxation time) fill the total volume uniformly in the free
adiabatic vacuum expansion (Gay-Lussac experiment).
This means going beyond the soluble example of section
3.2, for which purpose we need an

Assumption 2 Any initial state X0 ≡ (U0, V0, N0) ap-
proaches an equilibrium state X∞ ≡ (U∞, V∞, N∞) as
t → ∞.
By the second law (Cl), X∞ should be a maximum

of the entropy. This statement should be understood in
the sense of theorem 2.1: for an arbitrary division of the
system by an impenetrable wall such that (6) holds, the
equilibrium entropy is a maximum in the sense that:

(c.) the variation δS(X∞) = 0;
(d.) for any constrained equilibrium X 6= X∞,

∆S(X) > 0 (28)

Above, the variation δS(X∞) is defined within the class
of constrained equilibria, that is,

δS(X∞) ≡ d

dt
[S1(U1,∞ + tU, V1,∞ + tV )

+S2(U2,∞ − tU, V2,∞ − tV )]t=0

for U, V arbitrary, U∞ = U1,∞ + U2,∞ and V∞ = V1,∞ +
V2,∞. Using ∂S

∂U = 1
T , together with ∂S

∂V = p
T , we obtain

as equilibrium conditions

T1 = T2 (29)

as well as
p1 = p2 (30)

Since the above hold for any subdivision, (30) implies, of
course, that the gas fills the total container uniformly.
The quantity ∆S in (28) is defined by (9) of theo-

rem 2.1, with (U, V, N) there identified as (U∞, V∞, N∞).
Thus, item d above means that any transition from the
given equilibrium state to a different constrained equilib-
rium which occurs spontaneously, i.e., without changes
in the surroundings, is forbidden by the second law KP).
When d.) is satisfied, the equilibrium is called stable.

Remark 3.1. Since every subsystem of an equilibrium
state is itself in equilibrium, i.e., the insertion of any
impermeable wall does not change the equilibria of the
subsystems, it is possible to describe the thermodynamics
of a multi-phase system by its pure phases [15].
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Remark 3.2. Due to the fact that systems with internal
barriers comprise only a (very) special class of pertur-
bations of equilibrium states, definition d of a stable
equilibrium is not quite complete: according to the physi-
cal situation, several types of stability might be envisaged,
ranging from local to nonlocal perturbations.

The understanding of dynamics is, of course, essential
to grasp the (real) nonequilibrium phenomena observed
in Nature. There are several approaches to this important
issue: see [22] and references given there, as well as the
paper by Abou-Salem and Fröhlich [23] and references
given there. If we proceed along the lines of Assumption
2, progress may require the interplay of thermodynamics
with other areas of physics, a subject to which we now
turn.

4. The interplay between
thermodynamics and other areas of
physics: dynamical systems and
statistical physics

4.1. The picture furnished by the theory of
dynamical systems

Consider the dynamical system generated by the motion
of N matter points (“gas molecules”) in a fixed volume
V , and let Γ = {x ≡ (q1, p1), i = 1, · · · 3N} denote the
corresponding phase space, with q1 being the generalized
coordinates and pi the momenta. If the system is isolated
(fixed total energy E), Γ will be compact, and there
exists an invariant measure µ which may be interpreted
as the distribution in thermodynamic equilibrium [24].
Starting from initial conditions in a certain volume V1,
the set of admissible coordinates and momenta of the
molecules forms a subset A ∈ Γ. The formula

µ0(B) = µ(A ∩ B)
µ(A) (31)

defines a initial distribution (which is not the equilibrium
distribution), interpreted as conditional distribution rel-
atively to the system’s known initial condition. We may
now relate µ0 to the knowledge of the state of the system
at time t by the measure µt defined by

µt(B) = µ0(Tt(B)) (32)

where Tt is the (Hamiltonian) time evolution (flow) which
leaves µ invariant. In the given example

µ(F ) = µE(F ) =
∫

F

δ(H(x) − E)dx (33)

is the microcanonical Gibbs measure, where H(x) is the
Hamiltonian describing the system and (32) is Liouville’s
theorem. Suppose, now, that µ0 is absolutely continuous
(a.c.) with respect to µ, i.e., there exists ρ0 ∈ L1(M =

Γ, dµ) (integrable w.r.t. phase-space (Lebesgue) measure)
such that

dµ0 = ρ0(x)dµ (34)
Then,

µt(B) =
∫

M

χB(Ttx)dµ0 =
∫

M

χB(Ttx)ρ0(x)dµ (35)

We may define the property of mixing by the relation

lim
t→∞

µt(B) =
∫

M

χBdµ

∫
M

ρ0dµ = µ(B)1 = µ(B)

(36)
which means that, whatever the initial distribution, nor-
malized and a.c. w.r.t. µ, the time-translates µt of µ0
under Tt converge, for t → ∞, to the equilibrium distri-
bution. Note that the existence of the limit on the l.h.s.
of (36) is a part of the assumption: (36) may be taken as
the definition of the approach to equilibrium. This subject
is treated in much greater detail and depth, of course,
in the articles and book by Penrose [25], [26], to which
I must refer for a better understanding of the concepts
introduced here, as well as a wealth of applications, and
further references. A simple, illuminating introduction is
provided by the article [27].

What does (36) mean? It means that mixing systems
are “memoryless”, i.e., they posess a stochastic character
which justifies the probabilistic framework of equilibrium
statistical mechanics presented at the introductory texts
(for a recent, specially clear and pedagogical exposition,
see [28]). The microscopic mechanism of this loss of mem-
ory is the sensitive (exponential) dependence on initial
conditions produced by “defocalizing shocks” between
the gas molecules, first pointed out by Krylov (see [29]
and references given there).

We may picture the gas molecules as a system of hard
spheres enclosed in a cube with perfectly reflecting walls
or periodic boundary conditions. this is supposed to be
a K-system (see [30], Definition 4.7, p.101). Rising still
one step in this so-called ergodic hierarchy (see [27]), we
come to Bernouilli systems, such as the one we presently
introduce.
Define T2 by T2 : X → Y , where X = [0, 1] and

Y = [0, 1], by

T2x = fr(2x) ≡ 2x mod 1 (37)

Above, fr(x) = x − [x], where [x] denotes the largest
integer which is smaller or equal to x. Note that this map-
ping is not one-to-one (it is a so-called endomorphism).
In fact, we see that the inverse image of a point x is
either x

2 or x+1
2 . T2 is called the dyadic transformation

and leaves Lebesgue measure µ (on the line) invariant,
because the inverse image of a point y is

T −1
2 (y) = {y

2} ∪ {y + 1
2 } (38)

Indeed, from (38), µ(T −1
2 ([0, y])) = y, which generalizes

to

µ(A) = µ(T −1
2 (A)) for any Borel set A ∈ [0, 1] (39)
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T2 has a simple alternative description. Let x be given
by its expansion in basis 2, i.e.,

x = .ε1ε2 · · · =
∞∑

n=1

εn

2n
with εn ∈ {0, 1} (40)

Then, it is easy to see that

T2x = .ε2ε3 · · · and in general T n
2 x = .εn+1εn+2, · · ·

(41)
that is, T2 is the “one-sided shift” in this representation.
Given a Lebesgue integrable function, i.e.,

f ∈ L1(0, 1) (42)

we may define the Ruelle-Perron-Frobenius operator P
( [31], [32]) by∫

A

(Pf)(x)dx =
∫

T −1
2 (A)

f(x)dx (43)

If
f0(x) ≡ 1 (44)

it follows from (40) and (43) that

Pf0 ≡ 1 (45)

Let A = [0, x]. From (43), it follows that

(Pf)(x) = d

dx
(
∫ x

2

0
f(u)du +

∫ x+1
2

1
2

f(u)du) =

= 1
2[f(x

2 ) + f(x + 1
2 )]

from which, by iteration,

(P n(f))(x) = 1
2n

2n−1∑
k=0

f(x + k

2n
) (46)

We shall say that f is a density if f ≥ 0 a.e. ∈ (0, 1) and∫ 1
0 f(x)dx = 1; f0, given by (44), is the uniform density.

The words a.e. stand for almost everywhere, that is, in
the complement of a set with (Lebesgue) measure zero.
By (43) and (45), P maps densities to densities, and, by
(46),

lim
n→∞

(P nf)(x) =
∫ 1

0
f(y)dy = 1 (47)

Together with (45), (47) is a form of the property of
approach to equilibrium (36) (see also [31], Theorem 4.4.1,
p.65): the evolution of any density tends (for (discrete)
time n → ∞) to the unique invariant density, the uniform
density f0 given by (44).

Of particular importance above is that P is not defined
on individual orbits ot the map, which would correspond
to taking f in (43) to be a “delta function”, which is not
allowed by condition (42). Indeed, these individual orbits
behave rather erratically. Consider two points x1, x2,
both in [0, 1], close in the sense that the first n digits in

the expansion (40) are identical. By (41), it follows that
T n

2 x1 and T n
2 x2 differ already in the first digit: an initially

exponentially small difference 2−n is magnified by the
evolution to one of order O(1). When this property holds
for n arbitrarily large, as in the present example, one
speaks of the exponential sensitivity to initial conditions
mentioned before in connection with Krylov’s mechanism.
This is the aforementioned stochastic element: for almost
all x0 (in the sense of Lebesgue measure, i.e., excluding a
set γ of zero Lebesgue measure), T n

2 x0 comes arbitrarily
close to almost any x ∈ [0, 1] if n is taken arbitrarily large,
or, in other words, it “fills” the whole interval uniformly
throughout the evolution, and, thus, limn→∞ T n

2 x0 does
not exist for a.e. x0.

The set γ consists of the finite dyadic numbers xf , i.e.,
those whose dyadic expansion (40) is finite; it is immedi-
ate from the definiton of T2 that T n

2 xf → 0 mod 1, the
latter being the fixed points of the dyadic map: they are
untypical, in the sense that they do not fill the interval
uniformly. They may be analogous to some “bad” initial
configurations of the gas (not! initial states (U, V, N):
a configuration is a set of values of position and mo-
mentum coordinates of the N particles in the gas inside
the volume V , such that the total internal energy is U),
for example, those particle configurations with all initial
velocities directed away from the barrier which is lifted.
Their measure in phase space (in three dimensions) is
also zero, similarly to the set γ.

As a final remark, to connect with section 3.1, a map
with the property of mixing is necessarily ergodic ( [26],
[25], [27]), whose definition may be taken to be: a flow
Tt is ergodic if and only if any invariant function Φ
under the flow (i.e., such that Φ(Tt(x)) = Φ(x) for a.e.x
is a.e. a constant. Thus, assuming the microcanonical
measure (33), any function Φ invariant under the flow is
a functional of the total Hamiltonian H(x). For a free
system, however, H =

∑N
i=1 Hi, with N ≥ 2 (at least

two particles), and each Hi, i = 1, · · · , N is invariant
under the flow. Thus, a free system is not ergodic, and,
therefore, not mixing.

4.2. Connections with statistical physics

We now discuss additional points of the possible connec-
tion between the previous discussion and the vacuum
expansion of a gas of a large number N of molecules.
We have seen that, for T2, the evolution of densities
does approach a limit, in contrast, in general, to that of
individual orbits. This means that a “coarse-graining”
in the space variables implements a kind of “restoring
force” which pushes toward equilibrium: a density is de-
fined by its values on an infinite number of points. This
phenomenon is, for a deterministic system, much sub-
tler than the analogous one in an a priori probabilistic
context. One example of the latter is the Ehrenfest urn
model in the elementary theory of Markov chains ( [33],
Example 16, p.283).
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Remaining in the deterministic framework, the above
mentioned coarse-graining is analogous to consider an
infinite number of molecules, i.e., to take the thermody-
namic limit N → ∞, together with V → ∞, with N

V = ρ,
the particle density, taken to be a constant. A possible
approach to prove the analogue of Assumption 2 follows
the ideas of [34].

Instead of the entropy S(U, V, N) the primary object is
the specific entropy, i.e., the entropy per unit particle (or
unit volume) in the thermodynamic limit (assuming it
exists), which in the previous discussion would correspond
to

s(u, v) = lim
N,V →∞; V

N =v; U
N =u

1
N

S(U, V, N) (48)

The thermodynamic limit performs a “coarse graining” in
the particle system, which is analogous to considering the
evolution of densities, instead of individual trajectories,
in dynamical systems. One might therefore expect that,
starting from initial values (u0, v0) and an initial specific
entropy

s(u0, v0) ≡ s0 (49)

and setting ut = Ttu0, vt = Ttv0, where Tt is the flow in
(32),

Modified Second Law(Cl)

smax = lim
t→∞

s(ut, vt) (50)

The (analogue of the) modified Second Law (Cl) has
been demonstrated for a class of quantum systems in [34],
with the nontrivial feature that

smax > s0 (51)

In [34], the von Neumann definition of entropy

Svn(N, V ) = −ktrρN,V log ρN,V (52)

where ρN,V ≥ 0 is an operator of unit trace on the Hilbert
space of a quantum system of N particles in a volume V
(see [35]), i.e.,

trρN,V = 1 (53)

The classical analog of Svn is the Gibbs entropy SG:

SG(N, V ) = −k

∫
Γ

dxρ(x) log ρ(x) (54)

in the notation of (31) et seq., with ρ being the density of
the invariant measure µ , assumed to be absolutely con-
tinuous w.r.t. Lebesgue measure m = dx on phase space
Γ corresponding to the distribution in thermodynamic
equilibrium, i.e.,

µ(B) =
∫

B

ρ(x)dx (55)

where B is any (Borel) subset of Γ.

4.3. The Modified Second Law (Cl) and the
problem of proving Assumption 2

The theorem proved in [34] renders mathematically pre-
cise a result of Gibbs [36], as reformulated by Penrose [25].
It relies on the fact that the specific entropy is not con-
tinuous as a function of t, but rather only upper semicon-
tinuous. The significance of this property (together with
its precise definition) is well discussed in the classic book
by Geoffrey Sewell ( [37], 3.2.3). The associated Modi-
fied Second Law (Cl) given in the previous subsection
seems also quite natural from the physical point of view,
because it is the specific entropy that is measured. an
example of this is to be found in section 5, where the
analogous quantity (entropy per unit volume) is related
to the number of photons per unit volume in the model
of the cosmic microwave background radiation (CMB)
which pervades the Universe.

The thermodynamic limit reflects a coarse graining in
the space variables, as discussed in the previous section,
whose importance is as crucial as the corresponding oper-
ation in the theory of dynamical systems (see (47)). The
reason is that, in general, the thermodynamic limit does
not commute with the long-time limit in (50), and it is
precisely this feature which enables (51). For finite N, V ,
the Penrose-Gibbs theorem ( [25], p.1959) yields equality
in (51), because the full entropy S(Ut, Vt) (for fixed N)
is continuous rather than upper semicontinuous. This
noncommutativity will reappear (explicitly!) in a class of
models for the cosmological evolution of the photons in
the CMB in section 5 (the forthcoming proposition 5.1).
The problem remains, however, to prove Assumption

2 in a wider class of models, classical and quantum. This
is the famous problem of the approach to equilibrium
in closed systems. The greatest progress for quantum
continuous systems is due to Narnhofer in Thirring, for
a model of interacting fermions [38].
Summarizing: the central issues in the proof of the

Modified Second Law (Cl) are:
a.) the initial state X 6= Xeq;
b.) a coarse graining in the space variables, represented

by considering the specific entropy rather than the
entropy;

c.) the approach to equilibrium for the state must be
proved (Assumption 2);

d.) the time evolution is deterministic.

4.4. Irreversibility and the time arrow

As remarked by Griffiths [39], since two bodies at un-
equal temperatures, but in thermal contact, are known
to exchange energy in such a way that the temperatures
approach each other even in the presence of a magnetic
field, which breaks time-reversal invariance, the latter
is certainly not the key for understanding macroscopic
irreversibility.
Most of the states in Nature are unstable (nonequi-

librium) states. In atomic and molecular physics, for in-
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stance, all states with the exception of the ground state
are resonances, in particle physics, all but the lightest
particles are unstable.

Assume an initial (unstable) state at t = t0, of a given
atomic resonance, together with the electromagnetic field,
which decays by emission of a photon, to a final state of
the composed system (see [40] and references given there).
The initial unstable state must have been prepared at
some (finite) time in the past, i.e., at some time −∞ <
tp < t0, by some process (e.g., resonant scattering), which
delivered to the (compound) system a finite amount of
energy. We have suggested in [34] and [40] that this
preparation of the state is not time-reversal invariant:
this is the reason for the existence of an arrow of time.
A beautiful discussion of irreversibility is in section

3.8 of Peierls’ book [41]. On the first paragraph of p. 76,
he makes a statement in the same spirit of the above-
mentioned preparation of the state. He further adds: “We
thus see that the asymmetry arises, not from the laws
governing the motion, but from the boundary conditions
we impose to specify our question”.

Once given a definite time direction, the Modified
Second law (Cl) implies irreversibility, as long as (51)
holds.

5. The Universe and the interplay
between thermodynamics and field
theory: the second small point

Together with the Second law (Cl), Clausius formulated
the first law in the form

First law (Cl) The energy of the Universe is constant.
As a student, I knew that, when studying the large-

scale dynamics of the Universe, the basic tool is classical
field theory (in the form of classical general relativity,
see [42] as a lucid intermediate text, and [43] for an
advanced treatment).

Dyson [44] has studied in detail whether there are any
conceptual arguments which require that the gravita-
tional field be quantized, and, on the basis of the classic
paper by Bohr and Rosenfeld [45], arrived at the answer:
no. He then investigated whether, experimentally, the
graviton may be undetectable, and arrived at the answer:
yes, with great probability. There is, therefore, great
probability that, experimentally, classical general relativ-
ity will provide a description of the physical world which
is indistinguishable from the outcomes of a prospective
“quantum gravity”. This remark also applies to the inter-
action between quantum particles, e.g., photons, and the
Universe: there is a large probability the results of the
(forthcoming) “semiclassical” description are not distin-
guishable from those from a (hypothetical) fully quantum
theory, whose existence remains doubtful.
In general relativity, however, the space-time metric

tensor (gab) depends on space and time, and, thus, the
time-homogeneity does not hold. Thus, Noether’s theo-

rem ( [43], 8.1.5., p. 331) is not applicable, and First law
(Cl) does not hold!

Although, in First Law (Cl) the word “Universe” was
(probably) symbolic for any closed system, the Universe
happens to be a paradigm of a (or the) closed system
in thermodynamics, and this failure - my “second small
point”- seemed, at the time, to be a catastrophe, in
particular because of the supposedly universal character
of thermodynamics.
In this section, I attempt to review what is known

both on the first and second laws of thermodynamics
for the Universe on the light of present knowledge - still
keeping with textbook level.
Before considering large-scale properties of the Uni-

verse, it is useful to consider non-relativistic models of
cosmic sized systems. One example is the system of
N neutral massive fermions, interacting via Newtonian
forces. This is a model of a neutron star (pulsar), for
which the energy U = −cN7/3, where c is a positive con-
stant (see [46], Sec. 2.2.3, for a textbook discussion, [47]
for a rigorous derivation and [48] for a comprehensive
review). Due to this non-extensivity of the energy, as a
consequence of the long-range and attractive charater of
the gravitational interaction, the property of concavity of
the entropy S (10) does not follow as before and, indeed,
there is a regime in which S is convex with respect to
U , and the system undergoes a phase transition of the
van der Waals type (see [47] and [48]). In this regime,
the specific heat CV < 0, mirroring a stage in the stellar
evolution in which the star has exhausted the fuel that
would burn at that temperature: its core then contracts
and heats up, while energy is liberated to the surface,
which expands and becomes cooler. Since the star may
be considered as an isolated object, this process corre-
sponds to one in which heat (energy) passes by itself
from a colder to a hotter body, violating one of the forms
of the second law (also due to Clausius). It is, thus, in
general, not easy to define entropy, and its increase, in
the absence of extensivity, but, remarkably, an extension
of the treatment of [11] does allow this: see [49].
Parenthetically to the above discussion, and in con-

formance with the property of isolation, the statistical
mechanical description, as given, of the aforegoing pro-
cess of star collapse is restricted to the microcanonical
ensemble: the result in the canonical ensemble is different.
In particular, in the latter ensemble, the specific heat
is expressed as an energy fluctuation, which is always
positive.

Beyond a certain value of N , the non-relativistic mod-
els of stars become unphysical, because the mean particle
velocities attain values comparable with the velocity of
light, and general relativity comes into play. We now turn
to this case.
The cosmological principle - large-scale spatial homo-

geneity and isotropy of the Universe - implies that the
Universe is ruled by the general (so-called Robertson-
Walker) metric ( [43], 10.4.2), [42]), which is defined by
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the “element of arc”

ds2 = c2dt2 − [R(t)]2
∑3

a=1 dxadxa

[1 + κ
4

∑3
a=1 xaxa]2

(56)

Above, t denotes the “cosmic time” (henceforth referred
to simply as “time”), R(t) is the so-called scaling factor
(see [42], whose general lines we adopt), and κ denotes
the curvature. We fix a unique time t by taking t = 0
at the “big bang”, with limt→0+ R(t) = 0. It is believed
that the (present) Universe is flat (zero curvature), with
positive so-called cosmological constant Λ, in which case
the exact solution of Einstein’s equations is

R(t) = [32
c

Λ(cosh(ct(3Λ)1/2) − 1]1/3 (57)

(see, e.g., [50], p.279): it is an ever-expanding Universe,
for which

lim
t→∞

R(t) = ∞ (58)

For a given value of Λ = Λc, one of the solutions of
Einstein’s equations is purely static, corresponding to a
constant value of R, defining the Einstein model

R = Rc = (Λc)−1/2 (59)

(see [50], p. 278). Denoting the corresponding space met-
ric by ˆgab, we have, by (56),

ˆgab = gab

R(t)2 (60)

where we made, for simplicity, a multiplicative renormal-
ization R(t) → Λ−1/2

c R(t).
The background radiation (CMB radiation, for “cosmic

microwave background”) fills the Universe today with a
black-body spectrum with temperature

T̂p ≈ 2, 7K (61)

(see [42] and references given there), where the subscript
p stands for “present”. By the “hot big bang theory” [42],
it presumably arose from an equilibrium state of the
radiation field and a plasma of protons and electrons,
at a time t0 when the (equilibrium) temperature was
T̂ (t0) = T̂ , about 3000K, the ionization energy of the
hydrogen atom (with ~ = c = 1), at a certain R(t0).
A preliminary model of CMB radiation assumes that

the metric gab and the energy-momentum tensor of the
photons are independent, i.e., do not interact. For the
photons, this has the rather drastic consequence that the
averages of the energy and momentum at temperature
T̂ , at the cosmic time t0, may be related to the same
quantities at a later time, by the forthcoming relations
(62)-(66). At the end of the present section we shall
see that modifications of the first law for the Universe
do require interaction of the metric with the energy-
momentum of the photons (as well as with other matter
in the Universe)- the so-called “back-reaction”. It is, there-
fore, very surprising that this rather primitive model has

had such enormous success: Planck’s law fits the Uni-
verse’s signal with astonishing precision (see, e.g., [51]).
As we shall see, the CMB spectrum is, however, highly
stable (metastable), and this fact may account for the
unexpected accuracy of the approximation, which should
probably be regarded within the framework of a “cos-
mological perturbation theory” [51], shown to be quite
successful in the treatment of the anisotropies of the
CMB radiation, but no rigorous results exist in this di-
rection. Other examples, not accessible to experiment,
such as the thermalization of a quantum field in the pres-
ence of an event horizon (the Hawking thermal radiation
phenomenon, see [48] and references given there), show
clearly that drastic changes of a quantum field certainly
may occur even in a semiclassical picture.

Even if back-reaction is accounted for, it must be said
that unsolved problems remain concerning “freezing” the
metric and searching for a particle interpretation at each
instant of the cosmological time. In the (present) case
of a non-stationary metric, the particle interpretation
constantly changes with time. The Klein paradox (see,
e.g., [52], section 3.7, pp 120-121) illustrates this state-
ment well, in the sense that even an agreement on how
many particles are being counted depends on each instant
of time, since the metric acts like an external potential!

For the value R(t0), we consider a cube of (spatial) vol-
ume V̂ = L̂3, upon which we impose periodic boundary
conditions (b.c.) on the radiation field. the wave vectors
are k̂ = 2π

L̂
n; n ∈ Z3. the number of photons per unit

volume inside a tiny cube in k̂-space, which we label by
the vertices (k̂1, k̂2, k̂3), (k̂1 + ∆k̂1, k̂2 + ∆k̂2, k̂3 + ∆k̂3 of
k̂− -volume ∆3(k̂) ≡ ∆k̂1∆k̂2∆k̂3 is equal to

n̂t0(k̂) = ∆3(k̂)
exp( |k|

T̂
) − 1

(62)

Above, |k| =
√

k2
1 + k2

2 + k2
3 is the energy (frequency)

of the photons. We shall write henceforth k for |k|, for
brevity. Consider, now, any t > t0. How does the evo-
lution affect n̂t0(k̂)?. This is obtained from (60), with
the hat denoting the evolution by a static Universe with
R(t) = R(t0) = constant , and imposing the equality

n̂t0(k̂)V̂ = nt(k)V (63)

with V̂ = L̂3, V = L3, to obtain

r−3n̂t0(k̂) = nt(k) (64)

with
k̂

k
= r ≡ R(t0)−1R(t) (65)

L̂ = r−1L (66)
Equation (65) is the expression of the cosmological red
shift. By (62), (64), (65) and (66), we obtain

nt(k) = ∆3(k)
exp( (rk)

T̂
) − 1

= ∆3(k)
exp( k

T ) − 1
(67)
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Above,

T ≡ T̂

r
(68)

is the measured temperature of the present CMB radia-
tion, which is, of course, not an equilibrium temperature.
As previously discussed, (68) (with the present high value
of r, i.e., of the order of 3000) shows why the CMB spec-
trum is highly stable (metastable), because only a tiny
fraction of its “tail” interacts with the rest of the Uni-
verse, i.e., is able to ionize a hydrogen atom. The energy
Û in a volume V̂ equals

Û = (
∑

k̂= 2π
L̂

n;n∈Z3

k̂n̂t0(k̂))V̂

and, correspondingly, the energy U in a volume V equals

U = (
∑

k=r−1 2π
L n;n∈Z3

knt(k))V =

= (
∑

k= 2π
L n;n∈Z3

r−4k̂n̂t0(k̂))r3V̂

and hence
U = r−1Û (69)

By the formula ( [53]; see also [11] for some startling prop-
erties of this formula within the Lieb-Yngvason frame-
work):

Sph(U, V ) = U3/4V 1/4 (70)

we obtain

Proposition 5.1. The photon entropy Sph(U, V ) is, for
any fixed V , a constant of the cosmological evolution.
The specific entropy s(u), defined by

s(u) ≡ lim
V →∞

Sph(U, V )
V

with u ≡ lim
V →∞

U

V
(71)

depends, however, on T , given by (68), and equals

s(u) = u3/4 = 4
3σT 3 (72)

while
u = σT 4 (73)

with σ = π2

15 . Denoting by ρ the average (thermal) photon
density in the thermodynamic limit, we have

ρ = 2ζ(3)
π2 T 3 (74)

and, therefore, from (72),

s(u) = 4
45π2T 3 ≈ 3.6ρ (75)

Proof. The first assertion follows from (66), (69) and
(70). The remaining assertions are standard [53].

Corollary 5.2. With model (57),

lim
V →∞

lim
t→∞

Sph(U, V )
V

6= lim
t→∞

lim
V →∞

Sph(U, V )
V

= 0 (76)

Above, U and V denote energy and volume at a certain
time t, in agreement with the previous notation, where
we suppressed the parameter t for simplicity.

Proof. By the conservation law of proposition 5.1, the
l.h.s. of (76) equals 4

3 σT̂ 3 6= 0, while, by (68) and (72),
together with (57) and (65), the r.h.s. of (76) indeed
equals zero. This result only depends, of course, on (58)
and generalizes to any expanding Universe.

Corollary 5.2 shows that the entropy of the CMB pho-
tons satisfies Second law (Cl) (trivially, being conserved),
but not the Modified Second Law (Cl). this is due to
the (general) noncommutativity of the thermodynamic
limt with the limit of large times t → ∞, previously
mentioned at the end of section 4; it is here shown ex-
plicitly for this model. On the other hand, by (69), First
Law (Cl) is not satisfied, due to the loss of energy of the
CMB photons during the expansion of the Universe, as
a consequence of the cosmological red-shift (65).
According to (67), we live immersed in a (canonical)

state of radiation whose average (thermal) photon density
ρ = 20T 3

p , which amounts to four hundred photons per
cubic centimeter - a colossal number, quoting Harrison
( [9], p.274): “in one second, 1015 CMB photons will reach
the surface of your hand, at least a factor of 105 of all the
photons which have been radiated by the stars, and, by
(75) the largest part of the specific entropy of the Universe
is already in the background radiation and will be hardly
affected by the future behavior of the stars”. This specific
entropy violates, however, Modified Second Law (Cl),
and this violation is ultimately for the same reason why
the First Law (Cl) is violated, namely, the cosmological
red shift (65). It seems therefore of great importance to
understand the failure of both the first and (modified)
second law of thermodynamics for the Universe. As a
preliminary, one may pose the question: what replaces
the First Law (Cl) in the case of the Universe?
A gravitational energy-momentum pseudotensor has

been proposed by Landau and Lifschitz in their text
in classical field theory ( [54], Chap. 100, pp. 379-381),
and is called the Landau-Lifschitz pseudo-tensor tµν

LL.
When added to the energy-momentum of matter (which
includes photons and neutrinos) T µν is such that its total
divergence vanishes, i.e.,

((−g)(T µν + tµν
LL),µ = 0 (77)

where g denotes the determinant of gµν . Thirring (with
Wallner) derives tµν

LL from the Landau-Lifschitz 3-form
in his article in Rev. Bras. Fis. ( [55], Appendix C).
This yields a formula for tµν

LL in terms of the metric
tensor gµν and its derivatives. This article was one of the
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first to explore the use of E. Cartan’s exterior forms in
Einstein’s gravitation theory, following the pioneer work
of unification of electromagnetism and gravitation by M.
Schoenberg [56]. Cartan’s formalism, besides its elegance,
is also very economical, allowing to write down a compact
explicit formula for tµν

LL ((C.10) of Appendix C of [55]),
which neither I, nor the authors of [55]), have seen written
down elsewhere. From this formula, it is readily seen that
tµν
LL contains only first derivatives of the metric tensor

gµν , and these may be made to vanish at any chosen
point, upon choice of a frame which is locally inertial at
this point. This follows from the mass-energy equivalence
principle and, as a consequence, at any chosen point,
tµν
LL = 0, demonstrating why tµν

LL cannot be a tensor, as
well as the important fact that the gravitational energy-
momentum is delocalized. In spite of this, from (77) and
Stokes’ theorem, we obtain ( [43], Cor. 7.3.35, n.1):

First Law (Cl) The total energy and momentum are
conserved, as long as energy and momentum fall off suffi-
ciently fast at infinity on the submanifold t = const. .

Under suitable conditions, it is also expected that the
energy and momentum per unit volume in the thermo-
dynamic limit exist and are conserved: this corresponds
to versions of Modified First Law (Cl), which may be
expected to be of greater relevance from a physical stand-
point, since only the specific energy and momentum are
accessible to experiment. It should be emphasized that,
in spite of the loss of energy of (a part of) matter due to
(69), the pseudotensor tµν

LL does lead to a conservation
law due to the cancellation of the Einstein tensor with
the matter stress-energy tensor T µν by the Einstein field
equations, see ( [54], p. 381).
The above-mentioned cancellation does *not* occur,

however, within the previously made approximation that
the energy-momentum tensor of the photons is indepen-
dent of the metric!. For this reason the validity of First
Law (Cl) remains a challenging open problem.

Inclusion of the gravitational field is, in principle, also
able to show that Modified second law (Cl) holds for the
total specific entropy. This is, however, an even more
challenging open problem than the one associated to the
first law: indeed, nothing is rigorously known about the
specific entropy of the gravitational field!

As a final remark, a term containing the cosmological
constant

− c4

8πG
Λgµν

should be added to tµν
LL. Above, Λ denotes the (Einstein)

cosmological constant as before, and G the gravitational
constant. In this connection, it may be mentioned that
scale invariance of the macroscopic empty space, which
intervenes through the cosmological constant, leads to
a consistent theoretical framework, where neither dark
energy or dark matter are needed, as shown in the beau-
tiful work of Maeder (see [57] and references given there).
These brief remarks reflect, however, my personal view
only; for a deeper (and comprehensive) discussion of the

issues of dark matter, dark energy and the cosmological
constant, see [51].

6. Conclusion

Vaclav Havel has stated [58] that “the problem of modern
man is not that he understands less and less the meaning
of life, but that this fact has almost ceased to bother him”.
I shall not insist on the obvious parallel of this quote to
Sommerfeld’s, but hope that the present manuscript may
stimulate some readers in “bothering further” about the
deep open problems associated to the fundamental laws
of physics, in particular those of thermodynamics, some
of which have been discussed in sections 3, 4 and 5.
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