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The Foucault pendulum is a physical apparatus that shows the Earth’s rotation through the variation of the
plane of oscillation over time. The main physical agent responsible for this phenomenon is the non-inertial Coriolis
force, which couples the coordinates in the equation of motion. Although the Foucault pendulum is more than 170
years old, its theoretical description still lacks completeness, as there is no exact vector solution to the problem
or even a decoupled equation of motion. Furthermore, the main prediction about the Foucault pendulum, the
dependence of the pendulum’s plane of oscillation rotation on the latitude, needs to be revised as such dependence
is more complex than is shown in the literature, once it depends essentially on the initial conditions. Here all
these points raised are successfully answered.
Keywords: Foucault pendulum, high-order differential equations, exact solution.

1. Introduction

The French physicist Jean Bernard Léon Foucault
installed, in 1851 in the city of Paris, a simple pendulum
whose string length was very large compared to the
height reached by its bob [1]. The suspension point
of this pendulum was fixed relative to a reference
system located on the Earth’s surface. As the Earth
rotated, the suspension point followed such motion and,
as a result, the plane of oscillation of the pendulum
changed over time. This is a historical experiment that
directly demonstrated, without requiring astronomical
observations, that the succession of days and nights was
due to the Earth’s rotational motion. Such a device
was then called Foucault pendulum. Another interesting
consequence of this experiment is the possibility of
estimating the latitude of a location, by measuring
the angular displacement of the pendulum’s plane of
oscillation over the course of a day.
The physical-mathematical treatment of Foucault

pendulum is generally done within the subject of motion
in non-inertial frames, specifically to the motion relative
to the Earth [2–5]. However, this treatment is done
without finding a decoupled equation of motion and
generally appeals to a scalar approach using vector
components to solve the equation of motion in an
approximative way.
Here I present a fully vector approach of decoupling

the equation of motion and obtaining the exact solution
of the Foucault pendulum problem for generic initial
conditions within Coriolis approximation. The rotation
of the pendulum’s plane of oscillation is also investigated
and I show that the angular displacement of this plane
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depends essentially on the initial conditions, predicting
that even if a Foucault pendulum is exactly over the
Equator, there may be a rotation of its oscillation plane.

2. Equation of Motion and General
Solution

For motions in a non-inertial frame, Coriolis acceleration
2ṙ × ω is more relevant compared to centrifugal terms
and Euler acceleration, leading to the following equation
of motion [2]:

r̈ = T

m
+ g + 2ṙ × ω (1)

where T is the tension force of the string on the bob, g
is the Earth’s gravitational field, and ω is the (constant)
Earth’s rotation angular vector velocity.
The system is represented by Fig. 1, from which the

relation L = r − Lez is taken. The orientation of the
Cartesian axes in Fig. 1 is such that the z-axis points
vertically, so that g = −gez. The orientations of the x
and y axes in geographical terms are properly presented
in the next section.
The tensile force T on the pendulum bob points along

the direction of the string in the opposite direction to the
vector L, and can then be written as

T = −T L

L
= −T r − Lez

L
(2)

In general, the modulus of the tensile force T =
T (r, ṙ) is a nonlinear function of r and ṙ. Under the
condition of a very large wire length compared to vertical
displacements of the pendulum bob, the nonlinear terms
of T (r, ṙ) can be neglected and the modulus of the
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Figure 1: Representation of the pendulum (left) and vectors
(right) that locate the points of interest: pendulum suspension
point from the origin of the reference frame (Lez) and position
of the bob evaluated from the reference system (r) and also
from the pendulum suspension point (L).

tensile force can be approximated to T = mg [1, 3, 5],
leaving Eq. (1) in a simpler form

r̈ + ω2
0r = 2ṙ × ω (3)

where ω2
0 = g/L. Eq. (3) is an equation of motion

for a forced simple harmonic oscillator whose external
agent is the non-inertial Coriolis force, which causes the
observable effects on the Foucault pendulum [6]. The
equation of motion (3) has the coordinates coupled due
to the non-inertial term given by the cross product.
To decouple the equation of motion (3) it is necessary

to eliminate the cross product. This procedure can be
done by increasing the order of the differential equation.
By calculating the successive derivatives of the equation
of motion (3) until the sixth order and keeping all
expressions in terms of the four cross products r × ω,
ṙ × ω, ω × (r × ω), and ω × (ṙ × ω), a system of five
linear vector equations if obtained, which can be solved
exactly by considering r(6) and all four different types
of cross products as unknowns, resulting in the following
decoupled equation of motion:

r(6) + (3ω2
0 + 4ω2)(r(4) + ω2

0 r̈) + ω6
0r = 0 (4)

which is the decoupled equation of motion of the Fou-
cault pendulum within the Coriolis approximation. Its
general solution is obtained from simple methods, as
through the characteristic equation, leading to

r(t) = c0 cos(ω0t) + c1 sin(ω0t) + c2 cos (ω1t)

+ c3 sin (ω1t) + c4 cos (ω2t)

+ c5 sin (ω2t) (5)

where the cj are arbitrary vector constants and ω1,2 =√
ω2

0 + ω2 ± ω.

By using generic initial conditions r(0) = r0 and
ṙ(0) = v0, after some vector algebra, the constants cj

are given by

c0 = r0 −
ω × (r0 × ω)

ω2

c1 = 1
ω0

[
v0 −

ω × (v0 × ω)
ω2

]
c2 = 1

ω1 + ω2

×
[
−v0 × ω

ω
+
(
ω1 + ω2

2 − ω
)

ω × (r0 × ω)
ω2

]
c3 = 1

ω1 + ω2

×
[(

ω1 + ω2

2 − ω
)

r0 × ω

ω
+ ω × (v0 × ω)

ω2

]
c4 = 1

ω1 + ω2

×
[
v0 × ω

ω
+
(
ω1 + ω2

2 + ω

)
ω × (r0 × ω)

ω2

]
c5 = 1

ω1 + ω2

×
[
−
(
ω1 + ω2

2 + ω

)
r0 × ω

ω
+ ω × (v0 × ω)

ω2

]
(6)

which uniquely determines the solution r(t) in terms of
the initial conditions.

3. Rotation of the Oscillation Plane

The main phenomenon associated with the Foucault
pendulum is the rotation of the plane of oscillation
over time. With the exact solution of the Foucault
pendulum problem given in (5) and (6), it is possible to
precisely find the time dependence of this phenomenon
and determine all the factors that influence it.
The investigation of the rotation of the plane oscilla-

tion rotation becomes simpler if we deal with the angular
coordinates (θ, φ) given in Fig. 1, where θ is the angle
that the string makes with the vertical and φ is the
angle that the horizontal projection of r makes with
the x-axis, that is, the angle of the plane of oscillation.
The relationship of these angles with the Cartesian
coordinates (x, y, z) of r is given by

x = L sin(θ) cos(φ)

y = L sin(θ) sin(φ)

z = L(1− cos(θ))

(7)

To complete the description of the movement in
terms of coordinates, it is necessary to determine the
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Figure 2: Representation of the Earth’s rotation with the
Cartesian axes of the non-inertial frame located on the planet’s
surface. The latitude λ is positive in the northern hemisphere.

components of ω. Figure 2 outlines the alignment of the
Cartesian axes of the non-inertial frame located on the
planet’s surface: the x-axis always points in the direction
of a parallel and the y-axis in the direction of a meridian,
begin positive pointing to the North Pole. According to
the representation in Fig. 2 of the Earth rotation, ω is
given by

ω = ω cos(λ)ey + ω sin(λ)ez (8)

where λ is the latitude, evaluated from the center of the
Earth and positive in the northern hemisphere.
According to Eqs. (7), φ(t) = arctan(y(t)/x(t)).

However, even with the bob starting from rest, v0 = 0,
the exact solution of this movement becomes too compli-
cated due to the various vector terms in (6). Thus, some
conditions need to be imposed to arrive at a treatable
analytical solution such as

θ � 1, ω � ω0 (9)

where both have already been implicitly adopted to
justify T = mg [1, 3, 5].
By expanding φ(t) = arctan(y(t)/x(t)) in Taylor series

to first order in both ω and θ0 = θ(0) and considering
that the bob starts from rest, the following result is
reached:

∆φ(t) = φ(t)− φ0 = −
(

sin(λ)− θ0

2 sin(φ0) cos(λ)
)
ωt

(10)
where φ0 = φ(0). The bracket of (10) has one term
related to the initial bob position, (θ0, φ0), and the
latitude λ. An interesting parameter to obtain is the
variation ∆φday of the plane of oscillation angle in 24 h:

∆φday = −2π
(

sin(λ)− θ0 sin(φ0) cos(λ)
2

)
(11)

In the literature, ∆φday is given only by −2π sin(λ),
independent on the initial conditions [1–6]. The addi-
tional term for the angle variation in (11) shows that

Figure 3: Variation of a Foucault pendulum plane of oscillation
in 24 hours as a function of its latitude. Filled curves are given
by Eq. (11) where the upper (lower) curve refers to a positive
(negative) φ0. The dashed curve is the expression for ∆φday

found in literature: −2π sin(λ). Such expressions only coincide
at the Poles, where the Foucault pendulum executes a full 360°
rotation of its oscillation plane per day.

the initial displacement of the plumb is decisive for the
rotation of the oscillation plane [2], this difference being
maximum if the bob is abandoned in such a way that
the line that joins the bob and the equilibrium point of
the pendulum lies exactly on a meridian (φ0 = ±π/2).
The dependence of ∆φday with the latitude λ for this
situation is represented by Fig. 3, where the starting
angle was set as θ0 = 4°. For this θ0 angle, the maximum
difference between ∆φday in Eq. (11) and the value
predicted by the literature is ≈ 13°, evaluated for λ = 0,
the Equator. According to the literature, the plane of
oscillation of a Foucault pendulum located exactly on
the Equator line should not rotate whatsoever.
The only way to avoid rotation of the plane of

oscillation is with the suspension point of the Foucault
pendulum and the bob are exactly above the Equator
(φ0 = 0 or φ0 = π) at the start of the movement. In
this way, the bob never crosses the hemispheres during
its movement.

4. Nonlinear Effects on the Oscillation
Plane

The validity of Eq. (11) is restricted to first-order terms
in ω obtained in the expansion of the components x and
y of (5). By vanishing ∆φday in (11) it is possible to
determine a region of the planet where O(ω2) effects
become relevant in the rotation of the plane of oscilla-
tion. By defining θmax as the maximum θ0 value where
the small angle approximation sin(θ) ≈ θ is valid in
practical situations, the latitude where nonlinear effects
become relevant is given by

|λ(nl)| 6 arctan
(
θmax

2

)
(12)
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For θmax = 4°,
∣∣λ(nl)

∣∣ 6 2°. Therefore, for nonlinear
effects in ω on the rotation of the plane of oscillation
to be observable, the bob must be released within a
region of the planet delimited by (12). Any Foucault
pendulum located outside this latitude range will not
exhibit noticeable O(ω2) effects on the rotation of the
plane of oscillation.
Such nonlinear effects should be better observable if

the Foucault pendulum bob is exactly abandoned with
an orientation φ(nl)

0 given by

φ
(nl)
0 = arcsin

(
2 tan(λ(nl))

θmax

)
(13)

obtained again from vanishing (11).

5. Conclusions

The movement of the Foucault pendulum was inves-
tigated. The decoupling of the equation of motion
produced a sixth-order differential equation and an
exact general vector solution was obtained in terms
of generic initial conditions. The main phenomenon
associated with the Foucault pendulum, the rotation
of its oscillation plane, was evaluated according to the
approximation of small angles for the pendulum and low
Earth rotation compared to the frequency of oscillation
of the Foucault pendulum for a bob starting from rest.
The results differ from those found in the literature for
a factor that depends on the initial conditions. Such a
corrective factor implies the existence of rotation of the
plane of oscillation even if the suspension point is located
exactly on the Equator. This additional term is also
responsible for delimiting regions of the planet where
nonlinear terms in ω, the terrestrial rotation frequency,
should be relevant for determining the rotation of the
oscillation plane. Such a region is located around the
Equator, with latitudes no greater than ±2°.
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