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The problem of a particle subject to a time-dependent driving force plus a linear velocity-dependent friction
can be addressed by utilizing the unilateral Fourier transform, despite the presence of derivatives of odd and even
order in the differential equation. This technique yields a system of algebraic equations that combine the Fourier
sine and cosine transforms. While this method is useless for solving the homogeneous equation, it can be effectively
used to obtain an integral representation of the particular solution. Remarkably, this integral representation of
the particular solution is expressed in terms of the Green function. This type of exactly solvable problem is
relevant for students who are studying mathematical methods applied in the fields of physics and engineering
at the undergraduate level, as it can serve as a useful illustration of how unilateral Fourier transforms can be
employed to solve problems and to develop an understanding of Green functions, even in introductory calculus
courses.
Keywords: Velocity-dependent friction, Unilateral Fourier transform, Green function.

1. Introduction

Integral transforms are powerful mathematical opera-
tions that facilitate the conversion of a function defined
on one variable into a corresponding function defined
on another variable. These transforms find wide-ranging
applications in various fields. They are used to evaluate
definite integrals, convert complex partial differential
equations into simpler ordinary differential equations,
transform ordinary differential equations into more man-
ageable differential or algebraic equations, and play a
crucial role in tackling theoretical aspects of applied
problems.

The unilateral Fourier transform, also known as the
one-sided Fourier transform, is a frequently employed
mathematical tool for solving problems involving abso-
lutely integrable functions over a semi-infinite interval,
and has found extensive applications in causal signal
processing and communication theory (see, e.g. [1–3]).
However, it is important to be attentive to the appro-
priate homogeneous boundary (initial) conditions at the
origin when using this method. The Fourier sine or cosine
transforms should be used depending on whether the
Dirichlet or Neumann boundary condition is satisfied at
the origin. It is unfortunate that some authors overlook
these important boundary conditions [4–13] (see [14]
for a criticism), and there can also be issues with
the interrelation between sine and cosine transforms in
their derivative properties. Regarding this fact, Butkov
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mentions “The above result then indicates that the
Fourier cosine and sine transforms are convenient under
certain special conditions, such as in the absence of
the derivatives of odd or even order in the differential
equations . . .” [15]. Notwithstanding these issues, the
unilateral Fourier transform has been shown to be a
useful tool for solving bound-state solution problems
in non-relativistic quantum mechanics (see, e.g. [16–
19]), and even for the homogeneous differential equation
of the classical harmonic oscillator (in the sense of
the Dirac delta distributions) [20]. To be accurate, all
the aforementioned problems were solved under the
convenient “special conditions” alluded by Butkov.

In this work, we venture to utilize the unilateral
Fourier transform to solve a first-order ordinary differ-
ential equation that entails a combination of derivatives
of both odd and even orders, and we obtain the Green
function in the process.

The Green-function method is well-documented in
textbooks (see, e.g. [15, 21–25]) and didactic papers
(see, e.g. [26–31]), and has been shown to be intimately
related to the integrating factor for first-order differen-
tial equations [32].

The problem we approach here is of practical inter-
est to describe the motion of a particle subject to
a time-dependent driving force plus a possible linear
velocity-dependent friction (dv(t)/dt + γv(t) = f(t),
γ ≥ 0). While there are simpler methods available for
solving this problem, incorporating unilateral Fourier
transforms early on can provide several advantages.
By employing this approach, even individuals with a
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basic understanding of first-order ordinary differential
equations can gain valuable insights. This method can
be particularly useful as an educational tool in science
and engineering courses, introducing novice students not
only to the unilateral Fourier transform of an exactly
solvable problem but also to the concept of Green
functions.

2. Concise Overview of the Unilateral
Fourier Transform

To start, we will provide a concise overview of the
unilateral Fourier transform and some of its essential
characteristics. The direct Fourier sine transform of
ys(x) and the direct Fourier cosine transform of yc(x) are
represented by Fs{ys(x)} and Fc{yc(x)}, respectively.
These linear transforms are defined by the integrals (see,
e.g. [15, 21–25])

Fs{ys(x)} = Ys(k) =
√

2
π

∫ ∞

0
dx ys(x) sin kx,

(1)
Fc{yc(x)} = Yc(k) =

√
2
π

∫ ∞

0
dx yc(x) cos kx.

The original functions ys(x) and yc(x) can be recon-
structed using the inverse unilateral Fourier transforms
F−1

s {Ys(k)} and F−1
c {Yc(k)} expressed as

ys(x) = F−1
s {Ys(k)} =

√
2
π

∫ ∞

0
dk Ys(k) sin kx,

(2)
yc(x) = F−1

c {Yc(k)} =
√

2
π

∫ ∞

0
dk Yc(k) cos kx.

The unilateral Fourier transform can be derived using
the real form of the Fourier integral theorem, which
applies to functions defined on the entire axis. Once
the unilateral Fourier transform and its inverse are
established, the behaviour of the functions on the other
side of the axis becomes irrelevant. However, it is of the
greatest importance to recognize that ys(x) and yc(x)
are functions of different natures. The function ys(x)
obtained by means of Ys(k) must meet the homogeneous
Dirichlet boundary condition at the origin, whereas the
function yc(x) obtained by means of Yc(k) must satisfy
the homogeneous Neumann boundary condition at the
origin:

ys(x)|x=0 = dyc(x)
dx

∣∣∣∣
x=0

= 0. (3)

When dealing with the problem of satisfying boundary
conditions at infinity, it is important to recognize that
functions susceptible to the unilateral Fourier transform
extend beyond those that approach zero as x becomes
large. The key is to consider the Dirac delta symbol δ(x)
defined by its assigned properties (see, e.g. [15, 21–25]):

δ(x) = 0 for x ̸= 0,∫ +∞
−∞ dx F (x)δ(x − x0) = F (x0),

(4)

for any function F (x) continuous at x0. By substituting
(2) into (1), we find:

δ (k − k′) = 2
π

∫ ∞

0
dx sin kx sin k′x

= 2
π

∫ ∞

0
dx cos kx cos k′x.

(5)

This last result implies that not only absolutely inte-
grable functions are suitable for the unilateral Fourier
transform. This point of view, with the functions sin αx
and cos αx, was used in [20] for solving the homogeneous
differential equation of the classical harmonic oscillator.

To solve differential equations efficiently, it is vital
to understand the method of expressing the unilateral
Fourier transforms of the derivatives of ys(x) and yc(x)
in terms of ys(x) and yc(x) themselves, while taking into
account the relevant boundary conditions at the origin
that are automatically incorporated in the approach.
More specifically, when dealing with first-order deriva-
tives, the following connections arise through the process
of partial integration, where boundary terms vanish at
infinity (if this do not hold, the functions can treated as
Dirac delta distributions):

Fs

{
dyc(x)

dx

}
= −kFc{yc(x)} (6)

with dyc(x)/dx|x=0 = 0,

Fs

{
dys(x)

dx

}
= −kFc{ys(x)} (7)

with ys(x)|x=0 = dys(x)/dx|x=0 = 0,

Fc

{
dys(x)

dx

}
= +kFs{ys(x)} (8)

with ys(x)|x=0 = d2ys(x)/dx2
∣∣
x=0 = 0, and

Fc

{
dyc(x)

dx

}
= +kFs{yc(x)} (9)

with yc(x)|x=0 = dyc(x)/dx|x=0 = d2yc(x)/dx2|x=0 = 0.
The set (6)–(9) shows the aforementioned interrela-

tion between sine and cosine transforms in unilateral
transforms of the derivatives of odd order. Clearly, the
functions ys(x) in (7) and yc(x) in (9) are also subjected
to the Fourier sine and cosine transforms, respectively.

3. The Unilateral Fourier Transform
Applied to a First-order Equation

Consider the first-order non-homogeneous ordinary dif-
ferential equation

dv(t)
dt

+ γv(t) = f(t), γ ≥ 0, (10)
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defined on [0, ∞). Let vs(t) and vc(t) be solutions of (10)
differing only in their boundary conditions at the origin:
vs(t)|t=0 = dvc(t)/dt|t=0 = 0. By performing the Fourier
sine transform on both sides of (10) and utilizing (7), we
obtain:

−kFc{vs(t)} + γFs{vs(t)} = Fs {fs(t)} , (11)

with the boundary conditions

fs(t)|t=0 = vs(t)|t=0 = dvs(t)
dt

∣∣∣∣
t=0

= 0. (12)

For the Fourier cosine transform, we apply (9) to obtain

+kFs{vc(t)} + γFc{vc(t)} = Fc {fc(t)} , (13)

with

dfc(t)
dt

∣∣∣∣
t=0

= vc(t)|t=0 = dvc(t)
dt

∣∣∣∣
t=0

= d2vc(t)
dt2

∣∣∣∣
t=0

= 0.

(14)
The system of coupled algebraic equations and

their corresponding boundary conditions, described by
Eqs. (11)–(14), is not suitable for solving the homoge-
neous equation because the requirements v(t)|t=0 =
dv(t)/dt|t=0 = 0 in (10) with f(t) = 0 impose that the
derivatives of all orders of v(t) vanish at t = 0, leading
to v(t) = 0 for all t. Despite these limitations, we can
still seek a particular solution when f(t) ̸= 0.

For convenience, let us disregard the symbols fs(t) and
fc(t) and instead recall that f(t)|t=0 = df(t)/dt|t=0 = 0.
It is important to note that because vs(t) and
vc(t) are solutions of the same differential equation
Fs{vc(t)} = Fs{vs(t)} due to vs(t)|t=0 = vc(t)|t=0 =
0, and Fc{vs(t)} = Fc{vc(t)} due to dvs(t)/dt|t=0 =
dvc(t)/dt|t=0 = 0. Obviously, the boundary conditions
imposed on the system imply that vs(t) = vc(t). In the
subsequent developments, we will refrain from consid-
ering vs(t) = vc(t) and instead focus on working out
the details separately. The system of coupled algebraic
equations can be solved for Fs{vs(t)} and Fc{vc(t)}:

Fs{vs(t)} = γFs{f(t)} + kFc{f(t)}
γ2 + k2 (15)

and

Fc{vc(t)} = γFc{f(t)} − kFs{f(t)}
γ2 + k2 . (16)

We can now solve for vs(t) and vc(t) by inverting
(15) and (16). The inverse Fourier transforms yield
the following integral representations for the particular
solution of (10):

vs(t) =
∫ ∞

0
dτ Gs(t, τ) f (τ) (17)

for (15), and

vc(t) =
∫ ∞

0
dτ Gc(t, τ) f (τ) (18)

for (16). Because we speculated that vs(t) = vc(t), we
would expect Gs(t, τ) = Gc(t, τ). The two-variable func-
tions Gs(t, τ) and Gc(t, τ) are called Green functions.
They satisfy boundary conditions at t = 0 in accordance
with those ones imposed on vs(t) and vc(t), and are
expressed by

Gs(t, τ) =
√

2
π

Fs{Gs(k, τ)} (19)

and

Gc(t, τ) =
√

2
π

Fc{Gc(k, τ)} , (20)

where

Gs(k, τ) = γ sin kτ + k cos kτ

γ2 + k2 (21)

and

Gc(k, τ) = γ cos kτ − k sin kτ

γ2 + k2 . (22)

The Green functions can also be expressed as:

Gs(t, τ)

=
∫ ∞

0
dk

{
1
π

γ

γ2 + k2 [cos k(t − τ) − cos k(t + τ)]

+ 1
π

k

γ2 + k2 [sin k(t − τ) + sin k(t + τ)]
}

(23)

and

Gc(t, τ)

=
∫ ∞

0
dk

{
1
π

γ

γ2 + k2 [cos k(t − τ) + cos k(t + τ)]

+ 1
π

k

γ2 + k2 [sin k(t − τ) − sin k(t + τ)]
}

. (24)

The Green functions clearly reveal the boundary condi-
tions

Gs(t, τ)|t=0 = ∂Gc(t, τ)
∂t

∣∣∣∣
t=0

= 0. (25)

Furthermore, there are additional boundary conditions
to be validated at a later stage:

∂Gs(t, τ)
∂t

∣∣∣∣
t=0

= Gc(t, τ)|t=0 = ∂2Gc(t, τ)
∂t2

∣∣∣∣
t=0

= 0.

(26)
A convenient approach to solve (23) and (24) involves
utilizing a table of integrals. Alternatively, we can resort
to contour integration techniques, employing the Cauchy
integral formula or employing the method of residues.

When γ = 0, we will employ the definite integral
denoted as 3.721(1) in Ref. [33], expressed as:∫ ∞

0
dx

sin ax

x
= π

2 sgn(a), (27)
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where the sign function sgn(x) is defined such that
sgn(x) equals ±1 for x ≷ 0. It can be established that:

G(t, τ) = Gs(t, τ) = Gc(t, τ) = 1 + sgn(t − τ)
2 . (28)

For γ ̸= 0, we will utilize the definite integrals labelled
as 3.723(2) and 3.723(3) in Ref. [33]. These integrals are
given by:∫ ∞

0
dx

cos ax

β2 + x2 = π

2β
e−aβ , a ≥ 0, Re β > 0, (29)∫ ∞

0
dx

x sin ax

β2 + x2 = π

2 e−aβ , a > 0, Re β > 0. (30)

By utilizing these integrals, we can express the Green
functions as follows:

G(t, τ) = Gs(t, τ) = Gc(t, τ) = 1 + sgn(t − τ)
2 e−γ(t−τ),

(31)
As claimed, we have Gs(t, τ) = Gc(t, τ). More com-

pactly, for γ ≥ 0, we can write:

G(t, τ) = θ (t − τ) e−γ(t−τ). (32)

Here, θ(x) denotes the unit step function (θ(x) = 1 for
x > 0, and θ(x) = 0 for x < 0). It is important to empha-
size that the Green function aligns with (26), exhibits a
jump discontinuity at t = τ , and is constructed from the
solution of the homogeneous equation, i.e. e−γt. Lastly,
we can express the particular solution of equation (10) as

v(t) =
∫ t

0
dτ e−γ(t−τ)f(τ), (33)

where f(t) has at least a zero of order two at t = 0.

4. Final Remarks

We have demonstrated that the unilateral Fourier trans-
forms are ineffective in providing the general solution to
the problem of a particle subject to a time-dependent
driving force plus a linear velocity-dependent friction.
However, they do furnish an integral representation for
the particular solution in terms of the Green function.
From (17) and (18), we can show that both Gs(t, τ)
and Gc(t, τ) (which we denote by G(t, τ)) satisfy the
following equation:

∂G(t, τ)
∂t

+ γG(t, τ) = δ(t − τ) . (34)

Note that G(t, τ) satisfies a homogeneous equation for all
t, except t = τ , where it has a singular point. Therefore,
on each side of the singular point, the Green function is
expressed as a solution of the homogeneous equation. By
integrating (34) from τ − |ε| to τ + |ε|, we observe that
the Green function has a jump discontinuity at t = τ .
This jump discontinuity is given by

[G(τ + |ε|, τ) − G(τ − |ε|, τ)] →
|ε|→0

1. (35)

Furthermore, the boundary condition G(t, τ)|t=0 = 0
implies that G(t, τ) = 0 for all t < τ . This realization
underscores that G(t, τ) characterizes a retarded Green
function, elucidating the causal relationship between the
delta perturbation at t = τ and its subsequent influence
on G(t, τ) for t > τ . The boundary condition imposed
on G(t, τ) mirrors that imposed on v(t). In the physical
context of the present problem, Eq. (33) is suggestive:
v(t)|t=0 = 0 (remember, this is a sine qua non condition
for the existence of the Fourier sine transform) and any
change in v(t) in the future time t is influenced by f(τ)
for times preceding t.

Another problem that deviates from the convenient
“special conditions” alluded by Butkov is the forced
damped harmonic oscillator. This more intricate task is
left to the readers.
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