Rostrum length, mandible serration, and food and salivary canals areas of selected species of stink bugs (Heteroptera, Pentatomidae)

Rogério A. Depieri1 & Antônio R. Panizzi2

1Programa de Pós-Graduação em Ciências Biológicas, Entomologia, Universidade Federal do Paraná, Caixa Postal 19020, 81531-990 Curitiba-PR, Brazil. radepieri@gmail.com
2Laboratório de Bioecologia de Percevejos, Embrapa Soja, Caixa Postal 231, 86001-970 Londrina-PR, Brazil. panizzi@cnpso.embrapa.br

ABSTRACT. Rostrum length, mandible serration, and areas of food and salivary canals of selected species of stink bugs (Heteroptera, Pentatomidae). Laboratory studies were conducted to compare rostrum length morphology of mandible areas and food and salivary canals of *Dichelops melanipennis* (Dallas) (Dm), *Euschistus heros* (F.) (Eh), *Nezara viridula* (L.) (Nv), and *Piezodorus guildinii* (Westwood) (Pg). Nv showed the longest (5.9 mm) and Pg the shortest (3.5 mm). Dm and Eh were intermediate. Length and width of mandible areas were bigger for Nv (87.4 ± 13.6 and 24.3 ± 2.6 mm, respectively) and smaller for Pg (71.1 ± 1.3 and 23.7 ± 0.6 mm), with all species having four central teeth and three pairs of lateral teeth. The inner mandible surface showed squamous texture. Cross-section of food and salivary canals (Fc and Sc) indicated greater area for Nv and Dm compared to Eh and Pg; however, the ratio Fc/Sc, yielded the highest relative area for Pg.

KEYWORDS. Electron microscopy; mouth parts morphology; teneral adults.

Mouth parts of sucking insects (Heteroptera) show highly modified mandibles and maxillae (stylets). Different traits of the stylets including shape of the stylets tips, dentition of mandibular tips, filter hairs on maxillae, and size of food canal in several heteropterans have been studied (Faucheux 1975; Cobben 1978; Cohen 1990). In general, the stylets are hold together by a groove and ridge with interlocking “lips” that extend nearly the entire length of the stylets (Cobben 1978; Cohen 2000). In some cases, as for *Oncopeltus fasciatus* (Dallas) (Heteroptera, Lygaeidae), the maxillae are slightly longer than the mandibles, these ending with transverse rows of hooked teeth on the outer surface; lateral wall of the maxillae carry hooks that fit the internal grooves of mandibles, which show serrated tips, while that of maxillae are straight (Forbes 1976).

Cobben (1978) analyzed width and length of stylets, the connection between them, and the development of the salivary canal in various trophic groups. Brozek & Herczek (2004) presented a general model of the internal structure of heteropterans mouth parts, and systematized data on the types of connection between the right and left maxillae in various groups using insects from museums. The study of external structures of heteropteran mouth parts done in insects of unknown age, either from entomological collections or from laboratory colonies (Cobben 1978; Rani & Madhavendra 1995; Brozek & Herczek 2004), may lead to mistakes in interpretation, due to potential mandible wear during insect aging.

Therefore, in this study we compared rostrum length, external morphology of the mandibular tip (serration), and internal areas of the food and salivary canals of four species of pentatomids, important pests of field crops in Southern Brazil, of known age that were obtained from laboratory colonies.

MATERIAL AND METHODS

Insect Colony. Adults of *Dichelops melanipennis* (Dallas), *Euschistus heros* (F.), *Nezara viridula* (L.), and *Piezodorus guildinii* (Westwood) were field-collected using a sweep net on soybean, *Glycine max* (L.) cultivated at the Embrapa Farm in Londrina, northern Paraná State, Brazil (23°11’S; 51°11’W). They were taken to the laboratory and pairs (n = 30) were placed in clear plastic boxes (25 x 20 x 20 cm), and provided with pods of green beans, *Phaseolus vulgaris* L., raw shelled peanuts, *Arachis hypogaea* L., and berries of privet, *Ligustrum lucidum* Ait. (Oleaceae). Boxes were kept in a walk-in chamber at 25 ± 1°C temperature, 65 ± 5% RH
and a photoperiod of 14:10h (L:D). Food was replaced every other day and nymphs obtained were raised to adults.

Sample Preparation for Rostrum and Mandible Tip Analysis. Less than one day-old female adults (n = 10 for each species) were selected, killed by freezing, and the rostrum length measured in a stereomicroscope Leica MZ6 (Wetzlar, Germany) with a scaled ocular. Their mandibles (D. melacanthus, n = 8, E. heros, n = 6, N. viridula, n = 4, and P. guildinii, n = 4) were fixed by overnight immersion into a mix of EM grade glutaraldehyde 2.5%, paraformaldehyde 2%, and 0.2M sodium phosphate pH 7.2 buffer. The samples were rinsed with sodium phosphate buffer three times for 15 min (0.2M, pH 7.2) in aqueous solution. Post-fixation was made on 0.1M sodium cacodylate buffer three times for 15 min.

After dehydration in a series of ethyl alcohol increased concentrations, the samples were glued on carbon tape stick on specimen stub. The dried samples were gold coated with a sputter coater (BAL-TEC SCD050®, Balzers, Liechtenstein), examined and photographed in a scanning electron microscope (FEI Quanta 200®, Eindhoven, Netherlands). The mandible tip length was determined by the measurement from the 1st tooth to the end of the 3rd lateral teeth (Fig. 1, line a). The mandible tip width was determined by measurements taken in the middle portion of the 3rd lateral teeth (Fig. 1, line b).

Cross-Section Areas of Food and Salivary Canals and Maxillary Styles Junction. Because of structural irregularities in stylet apices, only sections made proximal to the bundle apex can be compared (Cobb 1978). The third rostral segment is usually well-developed, and its cross section allows better analysis of the internal connections between elements of the mouthparts, the position of the food and salivary canals, and the position of mandibles (Brozek & Herczek 2004). Because the internal structure of the labium is irregular, it is essential that comparison of the same structural elements should be done at the same point of cross-section (Forbes 1976).

Recently molted adult females were dissected with mouthparts separated (D. melacanthus, n = 20; E. heros, n = 20; N. viridula, n = 21; and P. guildinii, n = 18) and fixed by immersion overnight into a mix of EM grade glutaraldehyde 3%, paraformaldehyde 2%, and sodium cacodylate buffer (0.2M, pH 7.2) in aqueous solution. The samples were rinsed with 0.1M sodium cacodylate buffer three times for 15 min to remove all residual fixatives. Post-fixation was made on 1% sodium phosphate-buffered osmium tetroxide for one hour.

After dehydration in a series of ethyl alcohol increased concentrations, the samples were glued on carbon tape stick on specimen stub. The dried samples were gold coated with a sputter coater (BAL-TEC SCD050®, Balzers, Liechtenstein), examined and photographed in a scanning electron microscope (FEI Quanta 200®, Eindhoven, Netherlands). The mandible tip length was determined by the measurement from the 1st tooth to the end of the 3rd lateral teeth (Fig. 1, line a). The mandible tip width was determined by measurements taken in the middle portion of the 3rd lateral teeth (Fig. 1, line b).

Statistics. The experimental design for all trials was completely randomized. The data were submitted to ANOVA and the mean values were compared using the Tukey test (P ≤ 0.05) (SAS Institute 1998).

RESULTS AND DISCUSSION

Rostrum and Mandible Tip Analysis. The rostrum length was variable among the different species of pentatomids examined, with N. viridula (Nv) showing the longest (5.9 mm) and P. guildinii (Pg) the shortest (3.5 mm) values; for D. melacanthus (Dm) and E. heros (Eh) these values were intermediate and similar (Table I). In this case, rostrum length is clearly related to body length, which is known to be bigger for Nv and smaller for Pg (Panizzi & Machado-Neto 1992). These authors reported greater values for the rostrum length of females of Nv, Eh, and Pg, which were field-collected in the same area of Brazil than the ones reported here. For the cosmopolitan Nv, Follett et al. (2009) found the mean rostrum length of 6.5 mm (range 5.4 to 7.5) for adults (most

<table>
<thead>
<tr>
<th>Species</th>
<th>Rostrum length (mm)</th>
<th>Mandible tip length (µm)</th>
<th>Mandible tip width (µm)</th>
<th># Central teeth</th>
<th># Lateral teeth pair</th>
</tr>
</thead>
<tbody>
<tr>
<td>Dichelops melacanthus</td>
<td>4.9 ± 0.029</td>
<td>81.0 ± 0.75</td>
<td>26.8 ± 0.35</td>
<td>4</td>
<td>3</td>
</tr>
<tr>
<td>Euschistus heros</td>
<td>5.1 ± 0.030</td>
<td>87.9 ± 0.89</td>
<td>27.0 ± 0.36</td>
<td>3</td>
<td>3</td>
</tr>
<tr>
<td>Nezara viridula</td>
<td>5.9 ± 0.046</td>
<td>106.0 ± 1.11</td>
<td>30.2 ± 0.50</td>
<td>4</td>
<td>3</td>
</tr>
<tr>
<td>Piezodorus guildinii</td>
<td>3.5 ± 0.094</td>
<td>71.1 ± 1.08</td>
<td>23.7 ± 0.43</td>
<td>4</td>
<td>3</td>
</tr>
</tbody>
</table>

Means followed by the same letter in each column do not differ significantly using the Tukey test (P ≤ 0.05).
probably a mixture of males and females), which were field-collected in Hawaii, also greater than the values we report. Although we did not measure body length of females used, our laboratory Nv specimens examined were certainly smaller than the ones reported in the two studies referred, since in these studies they were obtained in nature; usually lab specimens of pentatomids are smaller than field-collected ones (A.R. Panizzi, unpublished).

The length and width values of mandible tips (areas holding serration) was also bigger for ones (A.R. Panizzi, unpublished). Lab specimens of pentatomids are smaller than field-collected since in these studies they were obtained in nature; usually our laboratory Nv specimens examined were certainly smaller than the ones reported in the two studies referred, since in these studies they were obtained in nature; usually lab specimens of pentatomids are smaller than field-collected ones (A.R. Panizzi, unpublished).

The selection of adults of known age to study the mandible dentation and rostrum length is because wear of the mandibular tip as a result of aging and feeding on hard foods to penetrate, compared to younger (teneral) adults that did not have any feeding experience. Therefore, choosing bugs of known age is a critical issue in this type of study.

Cross-Section Areas of Food and Salivary Canals and Maxillary Stylets Junction. The cross-section area of the food canal (Fc) and the salivary canal (Sc) on the third rostral segment showed higher values for N. viridula and D. melacanthus compared to E. heros and P. guildinii (Table II). The latter showed the smallest food and salivary canals areas. These results are probably related to body size, i.e., the greater the body size, the larger the area of the cross section of the canals. However, when considering the ratio Fc/Sc, P. guildinii showed the highest relative value, which indicates a relatively larger food canal. This species is known to be the most damaging pentatomid species on soybean, Glycine max (L.), seeds (Sosa-Gómez & Moscardi 1995; Corrêa-Ferreira & Azevedo 2002), but the reason for that was unknown. Recently, it was demonstrated that the greater seed area destroyed by P. guildinii compared to other pentatomids is due to the greater action of the saliva on the seed cells tissues (Depieri & Panizzi in press). The ecological significance of the relatively bigger canal on this last species considering the ratio Fc/Sc has not been proved. Clearly, additional studies are needed to fully demonstrate if this larger ratio value can be related to greater feeding damage or food consumption.

In conclusion, these results indicate that these species of pentatomid pests have variable rostrum length, and variable morphology of mandibular serration and area of food and salivary canals. These features, including those related to mandibular dentation and canal areas that were characterized for the first time in these species, may help to better understand the extent of damage they cause when feeding on seeds and/or vegetative tissues of their host plants.

Table II. Mean (± SEM) area of cross-section of food and salivary canals, and food/salivary canals ratio (Fc/Sc) on the 3rd rostral segment of selected species of pentatomids (number of observations in parentheses).

<table>
<thead>
<tr>
<th>Species</th>
<th>Food canal area (µm²)</th>
<th>Salivary canal area (µm²)</th>
<th>Fc/Sc¹</th>
</tr>
</thead>
<tbody>
<tr>
<td>Dichelops melacanthus</td>
<td>144.1 ± 4.72 a (20)</td>
<td>98.3 ± 3.39 ab (20)</td>
<td>1.48 ± 0.05 ab (20)</td>
</tr>
<tr>
<td>Euschistus heros</td>
<td>120.8 ± 2.81 b (20)</td>
<td>87.6 ± 2.79 b (20)</td>
<td>1.39 ± 0.03 b (20)</td>
</tr>
<tr>
<td>Nezara viridula</td>
<td>159.6 ± 5.10 a (21)</td>
<td>104.1 ± 3.55 a (21)</td>
<td>1.55 ± 0.5 ab (21)</td>
</tr>
<tr>
<td>Piezodorus guildinii</td>
<td>97.6 ± 3.15 c (17)</td>
<td>62.1 ± 1.88 c (17)</td>
<td>1.59 ± 0.07 a (17)</td>
</tr>
</tbody>
</table>

¹Means followed by the same letter in each column do not differ significantly using the Tukey test (P ≤ 0.05).
Acknowledgments. We thank Norman Neumaier and Daniel R. Sosa-Gómez for critically reading the manuscript and Simone S. Prado for assistance. This research was supported by a scholarship to RAD from the National Research Council for Scientific and Technological Development (CNPq), and through laboratory facilities provided by the Embrapa National Soybean Research Center and Paraná State University at Londrina, PR, Brazil. This paper was approved for publication by the Editorial Board of Embrapa Soja as manuscript number 22/2009.

REFERENCES


