Systematics, Morphology and Biogeography

Can sibling species of the *Drosophila willistoni* subgroup be recognized through combined microscopy techniques?

Rebeca Zanini, Maríndia Deprá, Vera Lúcia da Silva Valente*

Programa de Pós-Graduação em Biologia Animal, Laboratório de Drosophila, Universidade Federal do Rio Grande do Sul, Porto Alegre, RS, Brazil

Article Info

Received 6 April 2015
Accepted 4 August 2015
Available online 9 October 2015
Associate Editor: Márcia S. Couri

Keywords:
Cryptic species
Drosophila willistoni subgroup
Drosophila paulistorum complex
Male genitalia
Semispecies

Abstract

In several arthropod groups, male genitalia is the most important feature for species identification, especially in cryptic species. Cryptic species are very common in the *Drosophila* genus, and the Neotropical *Drosophila willistoni* species group is a good example. This group currently includes 24 species divided into three subgroups: *alagitans*, *bocainensis* and *willistoni*. There are six sibling species in the *willistoni* subgroup – *D. willistoni*, *D. insularis*, *D. tropicalis*, *D. equinoxialis*, *D. pavlovskiana* and *D. paulistorum*, which is a species complex composed of six semispecies – Amazonian, Andean-Brazilian, Centroamerican, Interior, Orinocan and Transitional. The objective of this study was to characterize male genitalia of the *willistoni* subgroup, including the *D. paulistorum* species complex, using scanning electron microscopy and light microscopy. We also tried to contribute to the identification of these cryptic species and to add some comments about evolutionary history, based on male genitalia characters. Despite being cryptic species, some differences were found among the siblings, including the *Drosophila paulistorum* semispecies.

© 2015 Sociedade Brasileira de Entomologia. Published by Elsevier Editora Ltda. This is an open access article under the CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/).

Introduction

Male terminalia is one of the most important traits used to identify cryptic species, which are very common in the *Drosophila* Føllén group. The Neotropical *Drosophila willistoni* species group is a good example of cryptic speciation. This group includes 24 species, which are divided into three subgroups: *alagitans*, *bocainensis* and *willistoni* (Rachli, 2015); the last of them showing various taxonomic levels with successive degrees of reproductive isolation (Robe et al., 2010). The *willistoni* subgroup includes six sibling species: *D. willistoni* Stuartvant, 1916, *D. equinoxialis* Dobzhansky, 1946, *D. insularis* Dobzhansky, 1957, *D. tropicalis* Burla and Da Cunha, 1949, *D. pavlovskiana* Katrissis and Dobzhansky, 1967 and *D. paulistorum* Dobzhansky and Pavan, 1949. These species are almost morphologically indistinguishable based on external morphology, exhibit varying degrees of premating isolation and usually do not cross-hybridize (Ehrmann and Powell, 1982). Within the subgroup, *Drosophila paulistorum* is a species complex, or also referred as a superspecies, composed of six semispecies (Dobzhansky and Spassky, 1959; Perez-Salas et al., 1970). The *willistoni* subgroup also shows taxonomic differentiation at the subspecies level: *D. willistoni* differentiates into the *willistoni* and *quechua* subspecies (Ayala and Tracey, 1973); *D. tropicalis* contains the *tropicalis* and *cubana* subspecies (Townsend, 1954); and *D. equinoxialis* is divided into the *equinoxialis* and *caribbensis* subspecies (Ayala et al., 1974).

According to the review of Cordeiro and Winge (1995), the sibling group is still in an active process of speciation and all levels of this process can be observed. The authors suggest two steps of speciation: incipient isolation, represented by the subspecies. The second step of speciation is exemplified by the semispecies, which show several degrees of reproductive isolation ranging from complete isolation to the presence of fertile offspring (Cordeiro and Winge, 1995) which was observed in the crossings of the Transitional semispecies with the Andean-Brazilian and the Centroamerican semispecies (Ehrman, 1961, 1965).

D. willistoni has the broader distribution of the group (Fig. 1), spanning from Central Mexico and Florida to Southern Brazil and Northern Argentina, and from the Atlantic to the Pacific Ocean (Dobzhansky and Powell, 1973; Ehrmann and Powell, 1982), even in areas of human disturbance (Valiati and Valente, 1996). *D. willistoni* is uninterrupted distributed over this area, except in deserts and high altitudes (Ehrmann and Powell, 1982). Other sibling species have narrower distributions within the distribution of *D. willistoni*, except *D. insularis*, which is endemic to Saint Kitts and Saint Lucia of the Antilles Islands (Dobzhansky et al., 1957), and *D. pavlovskiana*, which has been found only once in

* Corresponding author.
E-mail: vera.valente@pq.cnpq.br (V.L. da Silva Valente).

http://dx.doi.org/10.1016/j.rbe.2015.09.006
0085-5626/© 2015 Sociedade Brasileira de Entomologia. Published by Elsevier Editora Ltda. This is an open access article under the CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/).
when the semispecies’ territories overlap, they apparently do not interbreed. Previous studies suggested that the differences among morphological, physiological and ecological traits within the semispecies are too small to distinguish each semispecies (Pasteur, 1970; Perez-Salas and Ehrmann, 1971) and could only be recognized by examination of the gene arrangements on their chromosomes (Kastritis, 1967; Rohde et al., 2006) and by crossing tests (Perez-Salas and Ehrmann, 1971).

Despite being a traditionally studied group with an exciting evolutionary history, there is a lack of studies concerning the morphology in the early stages of development and also in adults. Some morphological studies of adults were made after the species were described. Burla et al. (1949) presented illustrations of maxillary palpi, vaginal plates, spermateca and hypandria of D. willistoni, D. tropicalis, D. equinoxialis and D. paulistorum. Hsu (1949) briefly described D. willistoni and D. equinoxialis male genitalia, in addition of some species of the alagitan and bocainensis subgroups. Malogolowkin (1952) provided a very detailed description of the male and female genitalia of D. willistoni, D. equinoxialis, D. tropicalis, D. paulistorum and some species of the bocainensis subgroup. Spassky (1957) showed illustrations of hypandria, aedeagi, surstyl and prensiseta of five sibling species – D. willistoni, D. tropicalis, D. equinoxialis, D. paulistorum and D. insularis. Pasteur (1970) made a biometrical comparison of four semispecies of D. paulistorum regarding wing and tibia lengths, wing-to-tibia ratios, wing size and number of prensiseta on surstylus. Vilela and Bächli (1990) redescribed D. willistoni and provided several illustrations of the male terminalia of this species. Eberhard and Ramirez (2004) presented several Scanning Electron Microscopy (SEM) images of male and female terminalia of D. willistoni. Rohde et al. (2010) provided photos of the hypandria of D. willistoni, D. equinoxialis, D. tropicalis and D. paulistorum without indicating the semispecies while suggesting the importance of this structure for their identification. Recently, Souza et al. (2014) provided SEM images of D. willistoni, which was used as outgroup of the phylogenetic reconstruction of the D. saltans group. Civetta and Gaudreau (2015) shown photos of external male genitalia and aedeagus of D. willistoni and the subspecies D. willistoni quechua. Also, there are SEM images of male terminalia of four sibling species (D. willistoni, D. tropicalis, D. equinoxialis and D. paulistorum) available in Emilio Goeldi Museum database (marte.museu-goeldi.br).

Burla et al. (1949) only found slight morphological differences that were insufficient for the identification of single individuals, while Spassky (1957) noted differences in the male genitalia that did permit such identification. In other way, Malogolowkin (1952) described the general morphology of the male genitalia of four sibling species (D. willistoni, D. equinoxialis, D. tropicalis and D. paulistorum) as very similar but completely different from non-sibling species. In addition, this author found no differences in the penises of these four sibling species. Spassky (1957), however, observed that the shapes of the penises and their gonapophyses differed in the sibling species.

With respect to D. insularis, only a few illustrations were presented by Spassky (1957). The previous descriptions and illustrations of D. paulistorum were based on Andean-Brazilian specimens once the specimens were collected in areas where only this semispecies is found (Mogi das Cruzes, São Paulo, Brazil in Burla et al. (1949) and Malogolowkin (1952); Tamandaré, Pernambuco, Brazil in Rohde et al. (2010)). The remaining species, D. pavlovskiana, has not been collected and is no longer available in Stock Centers. There is no description in the literature of the male genitalia of this species.

In this scenario, our objective was to characterize and compare the male terminalia of the species of the D. willistoni subgroup, including the D. paulistorum semispecies complex, using

Fig. 1. Geographic distribution of the D. willistoni species subgroup, according to Spassky et al. (1971), Winge (1971), Dobzhansky and Powell (1975), Ehrmann and Powell (1982), Santos and Valente (1990).

Fig. 2. Geographic distribution of the D. paulistorum superspecies, according to Spassky et al. (1971), Winge (1971), Dobzhansky and Powell (1975), Ehrmann and Powell (1982), Santos and Valente (1990).
Table 1
Species and strains used in this study. The numbered strains are represented in the figures.

<table>
<thead>
<tr>
<th>Species</th>
<th>Semispecies</th>
<th>Population sample</th>
<th>Localities</th>
<th>Source</th>
</tr>
</thead>
<tbody>
<tr>
<td>D. equinoxialis [1]</td>
<td></td>
<td>Mexico</td>
<td>Apazapán/México</td>
<td>Lee Ehrman and Yong Kyu Kim</td>
</tr>
<tr>
<td>D. equinoxialis</td>
<td></td>
<td>FNT12</td>
<td>Belterra/Brazil</td>
<td>Mário Josias Müller</td>
</tr>
<tr>
<td>D. equinoxialis</td>
<td></td>
<td>FNT19</td>
<td>Belterra/Brazil</td>
<td>Mário Josias Müller</td>
</tr>
<tr>
<td>D. equinoxialis</td>
<td></td>
<td>FNT32</td>
<td>Belterra/Brazil</td>
<td>Mário Josias Müller</td>
</tr>
<tr>
<td>D. equinoxialis</td>
<td></td>
<td>Tape03</td>
<td>Santarém/Brazil</td>
<td>Mário Josias Müller</td>
</tr>
<tr>
<td>D. equinoxialis</td>
<td></td>
<td>Tape31</td>
<td>Santarém/Brazil</td>
<td>Mário Josias Müller</td>
</tr>
<tr>
<td>D. equinoxialis</td>
<td></td>
<td>Tape32</td>
<td>Santarém/Brazil</td>
<td>Mário Josias Müller</td>
</tr>
<tr>
<td>D. equinoxialis</td>
<td></td>
<td>Tape63</td>
<td>Santarém/Brazil</td>
<td>Mário Josias Müller</td>
</tr>
<tr>
<td>D. equinoxialis</td>
<td></td>
<td>Tape89</td>
<td>Santarém/Brazil</td>
<td>Mário Josias Müller</td>
</tr>
<tr>
<td>D. equinoxialis</td>
<td></td>
<td>207018</td>
<td>Belém do Pará/Brazil</td>
<td>Marlınc Martins</td>
</tr>
<tr>
<td>D. insularis</td>
<td></td>
<td>SL15</td>
<td>São Luís/Lesser Antilles</td>
<td>Jeffrey R. Powell</td>
</tr>
<tr>
<td>D. willistoni [4]</td>
<td></td>
<td>WIP4</td>
<td>Salvador/Brazil</td>
<td>Antônio R. Cordeiro and Helga Winge</td>
</tr>
<tr>
<td>D. willistoni</td>
<td></td>
<td>Gdh4-1</td>
<td>Guadalupe/Caribe</td>
<td>Tucson Stock Center</td>
</tr>
<tr>
<td>D. willistoni</td>
<td></td>
<td>Ribeirão Preto</td>
<td>Ribeirão Preto/Brazil</td>
<td>Cláudia Rohde</td>
</tr>
<tr>
<td>D. willistoni</td>
<td></td>
<td>Mexico</td>
<td>Apazapán/México</td>
<td>Margarete Kidwell</td>
</tr>
<tr>
<td>D. willistoni</td>
<td></td>
<td>DW-Pool Ita</td>
<td>Itapua/Brazil</td>
<td>André Schnorr</td>
</tr>
<tr>
<td>D. willistoni</td>
<td></td>
<td>DW-Pool Faz</td>
<td>Serra do Cipó/Brazil</td>
<td>Carlos Vilela</td>
</tr>
<tr>
<td>D. willistoni</td>
<td></td>
<td>CIP</td>
<td>Serra do Cipó/Brazil</td>
<td>Carlos Vilela</td>
</tr>
<tr>
<td>D. willistoni</td>
<td></td>
<td>COR</td>
<td>Coronilla/Uruguay</td>
<td>Beatriz Goñi</td>
</tr>
<tr>
<td>D. willistoni</td>
<td></td>
<td>ISC</td>
<td>Santa Catarina/Brazil</td>
<td>Daniela de Toni</td>
</tr>
<tr>
<td>D. willistoni</td>
<td></td>
<td>DLA</td>
<td>Dois Lajeados/Brazil</td>
<td>Cláudia Rohde</td>
</tr>
<tr>
<td>D. willistoni</td>
<td></td>
<td>MAS</td>
<td>Morro Santana/Brazil</td>
<td>Ana Lauer Garcia</td>
</tr>
<tr>
<td>D. willistoni</td>
<td></td>
<td>Joinville</td>
<td>Joinville/Brazil</td>
<td>Jonas Dégo</td>
</tr>
<tr>
<td>D. willistoni</td>
<td></td>
<td>17A2</td>
<td>Eldorado do Sul/Brazil</td>
<td>Vera L.S. Valente</td>
</tr>
<tr>
<td>D. paulistorum [5]</td>
<td></td>
<td>Amazonian</td>
<td>Pará q3</td>
<td>Lee Ehrmann and Yong Kiu Kim</td>
</tr>
<tr>
<td>D. paulistorum</td>
<td></td>
<td>Tape 60</td>
<td>Santarém/Brazil</td>
<td>Mário Josias Müller</td>
</tr>
<tr>
<td>D. paulistorum [6]</td>
<td></td>
<td>MLC</td>
<td>Santa Catarina/Brazil</td>
<td>Marco Gottschalk</td>
</tr>
<tr>
<td>D. paulistorum</td>
<td></td>
<td>RIB</td>
<td>Ribeirão Preto/Brazil</td>
<td>Vera L.S. Valente</td>
</tr>
<tr>
<td>D. paulistorum</td>
<td></td>
<td>RMT</td>
<td>Porto Alegre/Brazil</td>
<td>Ana Lauer Garcia</td>
</tr>
<tr>
<td>D. paulistorum</td>
<td></td>
<td>Pool-Bur</td>
<td>Brasilia/Brazil</td>
<td>Rosana Tidon</td>
</tr>
<tr>
<td>D. paulistorum</td>
<td></td>
<td>Játom-Sacha</td>
<td>Játom Saca/Equador</td>
<td>Margaret Kidwell</td>
</tr>
<tr>
<td>D. paulistorum [7]</td>
<td></td>
<td>Centroamerican</td>
<td>Lancetilla</td>
<td>Lee Ehrman and Yong Kyu Kim</td>
</tr>
<tr>
<td>D. paulistorum [8]</td>
<td></td>
<td>Interior</td>
<td>Llanos/Colombia</td>
<td>Lee Ehrman and Yong Kyu Kim</td>
</tr>
<tr>
<td>D. paulistorum [9]</td>
<td></td>
<td>Orinocan</td>
<td>Georgetown/Guyana</td>
<td>Lee Ehrman and Yong Kyu Kim</td>
</tr>
<tr>
<td>D. paulistorum [10]</td>
<td></td>
<td>Transitional</td>
<td>Santa Marta</td>
<td>Lee Ehrman and Yong Kyu Kim</td>
</tr>
</tbody>
</table>

Scanning Electron Microscopy and Light Microscopy. We attempt to describe this morphological trait within species and find features that differentiate the sibling species and semispecies of the willistoni subgroup and verify if these species can be recognized based on characters of the male terminalia.

Material and methods

Fly stocks

The stocks were reared in a cornmeal medium (Marques et al., 1966) at a constant temperature and humidity (17 ± 1 °C; 60% rh). Some individuals were preserved in 70% ethanol, and mounted stubs and slides will be deposited in Fundação Oswaldo Cruz (Fiocruz) Collection. All strains used in this study are listed in Table 1.

Species recognition

Species were confirmed with the Acph-1 (Acid Phosphatase) electrophoresis protocol (Garcia et al., 2006). Also, DNA sequences were generated and compared with sequences available in GenBank – mitochondrial gene fragments COI (Cytochrome oxidase I) (deposited by Gleason et al., 1998), COII (Cytochrome oxidase II) (deposited by Robe et al., 2010), and nuclear genes fragment Adh (Alcohol dehydrogenase) (deposited by Gleason et al., 1998 and Robe et al., 2010). The sequences obtained will be presented in a further study.

Scanning electron microscopy (SEM) preparation and observation

Male terminalia were treated with 10% KOH (Wheeler and Kambsellis, 1966) modified by Bächli et al., 2004, and dissected in glycerol. Terminalia were dehydrated for 20–30 s with acetone washes in the following concentrations: 30%, 50%, 75% and 100%. The entire terminalia and separated parts were mounted in stubs with carbon tape and metalized with gold in a Balzers SCD050 sputter coater. Visualization and image capture were performed in JSM6060 Scanning Electron Microscope in Centro de Microscopia da Universidade Federal do Rio Grande do Sul. We observed approximately 50 seven-day-old specimens of each species and semispecies.

Light microscopy preparation and observation

Male terminalia were prepared as previously described. The terminalia, aedeagi and hypandria were mounted in a non-permanent glycerin jelly medium (Klaus et al., 2003). The slides were observed and photographed with a Carl-Zeiss Standard phase contrast microscope. We analyzed the genital structures of 7-day-old males of each species and semispecies (750 individuals).

Terminology and references

The morphological terminology used in this study follow Mc Alpine (1981), Grimaldí (1990), Vilela and Bächli (1990), Bächli et al. (2004) and Souza et al. (2014). Figures of external male
genitalia of *D. willistoni* subgroup, under light microscopy, are shown in Supplementary material 1 (S1).

Results

Epandrium, surstylus and prensisetae

The cerci are not fused to the epandrium (Figs. 3 and 4; Fig. S1) in all the species analyzed. The surstylus is elongated into a hook at the bottom, is not micropubescent, has up to 12 prensiseta (also called primary teeth) in *D. paulistorum* Orinocan and *D. paulistorum* Interior, and up to 18 prensiseta in *D. equinoxialis* (Fig. 5) in addition to one large prensiseta and one or two setae on the ventral hook.

Drosophila equinoxialis presents 18 prensiseta, nine smaller and nine larger, and one setae on the ventral hook (Figs. 4A and 5A). *D. insularis* has approximately 17 prensiseta of equal size and one setae in the ventral hook (Figs. 4B and 5B). *D. tropicalis* has 13–14 crescent size prensiseta and one setae in the ventral hook (Figs. 4C and 5C). *D. willistoni* also has 13 crescent sized prensiseta and one setae in the ventral hook (Figs. 4D and 5D).

Among the *D. paulistorum* semispecies, we found that *Drosophila paulistorum* Amazonian has a surstylus with 15 prensiseta, nine longer and six shorter, and one setae in the ventral hook (Figs. 4E and 5E). *D. paulistorum* Andean-Brazilian has a surstylus with 15 prensiseta, eight longer and seven shorter, and two setae in the ventral hook (Figs. 4F and 5F). *D. paulistorum* Centroamerican has a surstylus with 15 prensiseta, eight larger and seven smaller, and two setae in the ventral hook (Figs. 4G and 5G). *D. paulistorum* Interior has a surstylus with 12 crescent size prensisetae and two seta in the ventral hook (Figs. 4H and 5H). *D. paulistorum* Orinocan has a surstylus with 12 prensiseta of approximately the same size and two setae in the ventral hook (Figs. 4I and 5I). *D. paulistorum* Transitional has a surstylus with 12 prensisetae of approximately the same size, with one larger prensisetae in the middle and two seta in the ventral hook (Figs. 4J and 5J). The distance between the sides of surstylus and hooks could be an artifact of the SEM preparation and is not considered a diagnostic character for species identification.

Hypandrium

The hypandrium is smaller than the epandrium; it is approximately 1/4 to 1/3 of the size of the epandrium. The hypandria in all of the species analyzed have, in the apical region, one pair of heavily sclerotized median teeth, lobes with paramedian seta on the apex and lateral extensions (Figs. 6 and 7). The relative size and thickness of the median teeth, as well as the size and shape of the lobes, vary within the species (Figs. 6 and 7).

In *D. equinoxialis*, the hypandrium is triangular, with well-developed trapezoidal lobes and lobe seta convergent to teeth. The teeth are large and thick, twice the height of the lobes, aligned with the lobes, and do not touch each other. The lateral extensions are very prominent toward the top (Figs. 6A and 7A). *D. insularis* has
s slightly convergent seta. The lobes almost touch each other and the teeth are large and slightly separated, inserted in the lobe line. The lateral extensions are prominent toward the top, but less than in *D. equinoxialis* (Figs. 6E and 7E). *D. paulistorum* Andean-Brazilian presents a square-shaped hypandrium, slightly square-shaped lobes, convergent seta and very close, medium-sized, thin teeth that are twice the height of the lobes and inserted in the lobe line. There is a visible gap between the lobes and teeth. The lateral extensions are almost continuous with the lobes (Figs. 6F and 7F). *D. paulistorum* Centroamerican presents a rectangular hypandrium, which is the most elongated in *D. willistoni* subgroup, irregular-shaped lobes, convergent seta and very close, medium-sized, thin teeth that are twice the height of the lobes and inserted below the lobe line. The lateral extensions are similar to *D. willistoni* but nearer to the lobes (Figs. 6G and 7G). *D. paulistorum* Interior is very similar to *D. paulistorum* Andean-Brazilian, but the lateral extensions are not continuous with the lobes and there is no gap between the teeth and lobes (Figs. 6H and 7H). *D. paulistorum* Orinocan hypandrium is the smallest of the subgroup, is square-shaped with small round lobes, convergent seta and medium-sized, thin teeth that are thrice the height of the lobes and inserted a little below the lobe line. Lateral extensions are expanded to external sides of the lobes (Figs. 6I and 7I). *D. paulistorum* Transitional presents a square-shaped hypandrium, small round lobes very close to the teeth, convergent seta and large thick teeth that are almost thrice the height of the lobes and inserted in the lobe line. Lateral extensions are prominent toward the top, higher than the lobes (Figs. 6J and 7J).

Aedeagus, aedeagal apodeme, paramere and lateral projections

In all of the species of the *D. willistoni* subgroup that have been analyzed, the aedeagus is dorsally membranous and ventrally directed downwards, as a bird beak-like protusion at the distal end (distiphallus), with two lateral projections at the anterior half, covered with some tiny spines that are not always visible in preparations. The aedeagal apodeme is as long as the aedeagus, is bar shaped and is linked to the aedeagus by a membranous tissue. The parameres are smooth and are also linked to the apodeme by a membranous tissue. The paramere anchors the aedeagus to the hypandrium through the lateral expansions of hypandrium.

The most noticeable difference within the *willistoni* subgroup is the distal portion of the aedeagus (distiphallus). This is very prominent and curved in *Drosophila tropicalis* (Figs. 8C, 9C and 10C), long and straight in *D. willistoni* (Figs. 8D, 9D and 10D), and straight and shorter than *D. willistoni* in *D. equinoxialis* (Figs. 8A, 9A and 10A). In *D. insularis*, this structure is the shortest among the siblings (Figs. 8B, 9B and 10B). There are small variations in size within the *D. paulistorum* semispecies, but the shape of the distiphallus is unique in each incipient species (Figs. 8E–J, 9E–J and 10E–J).

The lateral projections exhibit some differences within the subgroup, which are more notable in *D. willistoni*, *D. tropicalis*, *D. equinoxialis* and *D. insularis*. In *D. equinoxialis* and *D. paulistorum* Orinocan the distal portion of lateral expansions is rounded; in *D. insularis*, *D. tropicalis* and *D. willistoni* it is pointy; and in the remaining *D. paulistorum* semispecies, it is slightly pointy.

The aedeagal apodeme also shows variation; however, it is not species specific. In *D. equinoxialis*, *D. insularis*, *D. tropicalis* and *D. willistoni*, the aedeagal apodeme is rod shaped, without ornamentation in the distal portion (Figs. 9A–D and 10A–D). In the Amazonian, Andean-Brazilian, Interior and Transitional semispecies, the aedeagal apodeme is also rod shaped but with a small rounded expansion in the distal portion (Figs. 9E,F,H,J and 10E,F,H,J), and in the Centroamerican and Orinocan semispecies, there is a fan-like expansion in the distal area (Figs. 9G, I and 10G, I).
Fig. 6. Scanning Electron Microscopy of the D. willistoni species subgroup hypandria. Scale bar 50 μm. The strains are in brackets and listed in Table 1. LO, lobes; TE, teeth; LE, lateral extensions; SE, seta. (A) D. equinoxialis [1]; (B) D. insularis [2]; (C) D. tropicalis [3]; (D) D. willistoni [4]; (E) D. paulistorum Amazonian [5]; (F) D. paulistorum Andean-Brasilian [6]; (G) D. paulistorum Centroamerican [7]; (H) D. paulistorum Interior [8]; (I) D. paulistorum Orinocan [9] and (J) D. paulistorum Transitional [10].

Fig. 7. Hypandria of D. willistoni species group. Scale bar 0.1 mm. The strains are in brackets and listed in Table 1. LO, lobes; TE, teeth; LE, lateral extensions; SE, seta. (A) D. equinoxialis [1]; (B) D. insularis [2]; (C) D. tropicalis [3]; (D) D. willistoni [4]; (E) D. paulistorum Amazonian [5]; (F) D. paulistorum Andean-Brasilian [6]; (G) D. paulistorum Centroamerican [7]; (H) D. paulistorum Interior [8]; (I) D. paulistorum Orinocan [9] and (J) D. paulistorum Transitional [10].

Fig. 8. Scanning electron microscopy of D. willistoni species subgroup aedeagi. Scale bar 20 μm. The strains are in brackets and listed in Table 1. (A) D. equinoxialis [1]; (B) D. insularis [2]; (C) D. tropicalis [3]; (D) D. willistoni [4]; (E) D. paulistorum Amazonian [5]; (F) D. paulistorum Andean-Brasilian [6]; (G) D. paulistorum Centroamerican [7]; (H) D. paulistorum Interior [8]; (I) D. paulistorum Orinocan [9] and (J) D. paulistorum Transitional [10].
Fig. 9. Aedeagi, aedeagal apodeme and parameres of the D. willistoni species subgroup; lateral view. Scale bar 0.1 mm. The strains are in brackets and listed in Table 1. AA, Aedeagal apodeme; DP, Distiphallus; LP, Lateral projections; PA, Paramere. (A) D. equinoxialis [1]; (B) D. insularis [2]; (C) D. tropicalis [3]; (D) D. willistoni [4]; (E) D. paulistorum Amazonian [5]; (F) D. paulistorum Andean-Brasilian [6]; (G) D. paulistorum Centroamerican [7]; (H) D. paulistorum Interior [8]; (I) D. paulistorum Orinocan [9] and (J) D. paulistorum Transitional [10].

Fig. 10. SEM of aedeagi, aedeagal apodeme and parameres of the D. willistoni species subgroup; lateral view. Scale bar 50 μm. The strains are in brackets and listed in Table 1. AA, Aedeagal apodeme; DP, Distiphallus; LP, Lateral projections; PA, Paramere. (A) D. equinoxialis; (B) D. insularis; (C) D. tropicalis [3]; (D) D. willistoni [4]; (E) D. paulistorum Amazonian [5]; (F) D. paulistorum Andean-Brasilian [6]; (G) D. paulistorum Centroamerican [7]; (H) D. paulistorum Interior [8]; (I) D. paulistorum Orinocan [9] and (J) D. paulistorum Transitional [10].

Discussion

This study sheds new light on the identification of the D. willistoni sibling species subgroup, especially regarding the D. paulistorum complex. We presented here for the first time images of the male terminalia of the six semispecies of the D. paulistorum. Now, the male identification of the cryptic species of this subgroup could be easier and quicker than enzymatic, molecular and chromosomal approaches.

We found major differences especially in D. willistoni, D. tropicalis, D. equinoxialis and D. insularis. While there is a strong sexual isolation within these species, it has been reported that they occasionally interbreed (Dobzhansky et al., 1957; Winge and Cordeiro, 1963; Winge, 1965; Cordeiro and Winge, 1995), and several degrees
of reproductive affinity are present between the sibling species group (reviewed in Cordeiro and Winge, 1995).

Our findings are consistent with the results presented in Spassky (1957) regarding D. equinoxialis, D. insularis, D. tropicalis, D. willistoni and D. paulistorum Andean-Brazilian. However, a notable aspect of this comparison is that intraspecific variation was not observed in our results. We analyzed the male genitalia of D. equinoxialis, D. insularis, D. willistoni and D. paulistorum Andean-Brazilian from several localities (Table 1), including some recently collected strains, and no remarkable character variation was found (data not shown). This fact does not imply that there are no intraspecific variation in these species and in other species and semispecies of the willistoni subgroup. Also, laboratory strains may have less character variation than found in nature. Burla et al. (1949), however, concluded that “the variability is great enough to make identification of single individuals hazardous”.

Burla et al. (1949) found differences in the hypandrium of four of the sibling species – D. willistoni, D. paulistorum, D. tropicalis and D. equinoxialis – and described the D. tropicalis hypandrium as similar to that of D. paulistorum in shape, although larger. These authors also stated that the D. willistoni hypandrium is the most distinctive. In contrast with the findings of Burla et al. (1949) we observed that the hypandria of D. insularis and D. tropicalis are the most distinctive with respect to the remaining species. D. willistoni seems to be more similar to the D. paulistorum semispecies than to the other species. Some features could only be observed in SEM: D. willistoni and D. insularis presented two sets in the apex of the lobes, only in one side (Fig. 6B); Despite the low frequency of this modification (1:50 in D. willistoni and 2:50 in D. insularis), it is an interesting feature. The specimens with this characteristic did not present any other peculiarity.

Pasteur (1970) considered the teeth of the claspers (the prensisetae in the surstylos) to be the single character of the male genitalia that differentiates the D. paulistorum incipient species. In our results (Fig. 5), the number of prensisetae is consistent with the range of values previously observed by Pasteur (1970). We observed two groups regarding the number of prensisetae – the semispecies Amazonian, Andean-Brazilian and Centroamerican with 15 prensisetae each and Centroamerican, Interior and Transitional semispecies with 12 prensisetae each, although the size and arrangement of the prensisetae are not the same for each one. Pasteur (1970) found variation in the number of prensisetae in each semispecies from different localities. In this study, we observed D. paulistorum Andean-Brazilian from several localities and the number of prensisetae was constant, even in the recently collected strains.

In the present report, we show that there are several diagnostic characters of the male genitalia useful for differentiating the species and even the semispecies of the D. willistoni species subgroup. However, the aedeagus is not the most important trait for identifying the subgroup’s cryptic species, as is common in other Drosophila species groups. In the studied species, the hypandrium seems to be the main character for species identification. In addition to this, we suggest the visualization of the aedeagus under light microscopy for identification purposes, since this is a membranous structure and may be deformed in SEM.

Based on visual observations of hypandrium D. insularis seems to be the most distinctive species, related to the other sibling species. Within the D. paulistorum semispecies, the most dissimilar is the transitional, especially with respect to the hypandrium shape, surstylos and prensisetae. Such variation is in accord with the assumptions of Spassky et al. (1971) and Dobzhansky (1970), stating that the diversification of the semispecies is apparently still in progress.

Concerning the evolutionary relationship among the willistoni subgroup, an attempt to phylogenetic reconstruction was made using the characters of the male terminalia observed and described in this study. The reconstruction, however, were inconclusive, since the generated tree presented some polytomies and low support values for the characters (data not shown). Despite of the differences observed, it is possible that these characters did not accumulated enough differences to represent the evolutionary history of the subgroup. Nevertheless, these characters could be useful in a combined phylogeny and will be presented in a further study.

Although complete reproductive isolation is not present within the species and semispecies of the D. willistoni subgroup (reviews in Ehrmann and Powell (1982) and Cordeiro and Winge (1995)), the number of differences among the male genitalia found in our observations is relevant, especially between the D. paulistorum semispecies. In insects, the rapid divergence in male genitalia is so pronounced that even recently diverged sibling species show a high degree of variation in the male genitalia (Richards, 1927; Liu et al., 1996; Song, 2009), as we have observed in the D. willistoni species subgroup. Finally, in response to our own question, sibling species of the D. willistoni subgroup can be recognized through combined microscopy techniques.

Conflicts of interest

The authors declare no conflicts of interest.

Acknowledgements

We thank to CNPq, CAPES and FAPERGS (process 10/0028-7) for financial support. We thank to Dr. Hermes José Schmitz, Dr. Marco Gottschalk and Ms. Jean Lucas Poppe for precious suggestions. We thank to Dr. Yong Kyu Kim, Dr. Lee Ehrmann, Dr. Jeffrey R. Powell and all the other collectors for the provided strains. We also thank the anonymous reviewers for the suggestions.

Appendix A. Supplementary data

References

