Systematics, Morphology and Biogeography

Paxiximyia sulmatogrossensis, a new genus and species of Tachinidae (Diptera) reared from *Urucumania borellii* (Giglio-Tos, 1897) (Phasmatodea: Pseudophasmatidae) collected in the state of Mato Grosso do Sul, Brazil

Ronaldo Toma a,*, Renan da Silva Olivier b

a* Fundação Oswaldo Cruz (Fiocruz), Mato Grosso do Sul, Campo Grande, MS, Brazil
bUniversidade Federal de Mato Grosso do Sul, Instituto de Biociências, Laboratório de Sistemática, Ecologia e Evolução, Campo Grande, MS, Brazil

A R T I C L E I N F O

Article history:
Received 3 July 2017
Accepted 13 October 2017
Available online 15 November 2017
Associate Editor: Marcia Souto Couri

Keywords:
Blondeliini
Oedematocerini
Parasitism
Phasmida
Taxonomy

A B S T R A C T

A new genus and species of Tachinidae (*Paxiximyia sulmatogrossensis* n. gen. and n. sp.), and its puparium are described. It was reared from the walking stick, *Urucumania borellii* (Giglio-Tos, 1897), collected in Aquidauana, Mato Grosso do Sul, Brazil.

© 2017 Sociedade Brasileira de Entomologia. Published by Elsevier Editora Ltda. This is an open access article under the CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/).

Introduction

A new genus and species of Tachinidae, *Paxiximyia sulmatogrossensis* n. gen. and n. sp., reared from adult *Urucumania borellii* (Giglio-Tos, 1897) (Pseudophasmatidae), is described in this paper. According to Guimarães (1977, 1978, 1982) and Cortés (1968), a few Tachinidae genera are known as parasites of Phasmatodea and Orthoptera in the Neotropical Region, most of them belonging to the Acemyini, Ormiini, and Blondeliini tribes. Most Acemyini are parasitoids of Acrididae. Members of Ormiini have been reared from Gryllidae and Tettigoniidae. Most species of Blondeliini have been recorded parasitizing either larvae and adults of Coleoptera and larvae of Lepidoptera, while a few have been documented parasitizing sawflies, crane flies, and wasp larvae, as well as immature and adult Blattodea, Phasmatodea, and Orthoptera (Wood, 1985; Wood and Zumbado, 2010). *Paxiximyia* n. gen. resembles genera in this group. According to Wood (1985), *Oedematocera*-group, including *Meigenielloides* Townsend, 1919, external morphology and host preference suggest its genera may be related.

The new genus belongs to Blondeliini, with which it shares the following combination of characteristics mentioned by Wood (1985) in his conspectus of the Blondeliini of North and Central America and West Indies: prothoracic supra-alar seta smaller than first prothoracic dorsocentral seta, vein R4+5 ending at or near wing tip, body elongated, and mid-dorsal depression of abdominal syntergite 1+2 not reaching hind margin.

* Corresponding author.
 E-mail: rtkuna1@gmail.com (R. Toma).

https://doi.org/10.1016/j.rbe.2017.10.004
0085-5626/© 2017 Sociedade Brasileira de Entomologia. Published by Elsevier Editora Ltda. This is an open access article under the CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/).
Material and methods

Host collection

Four male and three female adult U. borellii specimens were collected in Morro do Paxixi, Aquidauana, Mato Grosso do Sul, Brazil (20°27′00.5″S/55°37′20.8″W) on January 19, 2017. The collection was carried out with permission from the Instituto Chico Mendes de Conservação da Biodiversidade (ICMBio authorization number 49550-1).

Specimen measurements, description, and deposit in collections

Morphological terminology of structures follows McAlpine (1981) and Wood and Zumbado (2010). Head structures were measured according to Toma and Guimarães (2002). Images of body structures and measurements of tachinid flies were taken under a Leica M205C stereomicroscope with a coupled Leica DFC420 camera, and analyzed using Leica Application Suite V. 3.8.0 imaging software. Images and measurements of the hosts and puparium were taken under a Zeiss Discovery V20 stereomicroscope with a coupled Zeiss AxioCam ICC5 camera, using AxioCam IC-ZEN pro 2012 software.

Paxiximyia sulmatogrossensis n. gen. and n. sp. type specimens were deposited in the Coleção Zoológica de Referência at the Universidade Federal de Mato Grosso do Sul (ZUFMS) in Campo Grande and the Diptera Collection at the Museu de Zoologia da Universidade de São Paulo (MZUSP) in São Paulo. All U. borellii specimens were deposited with ZUFMS.

Distribution map

Observation records of the host species were obtained from the second author’s collections, literature and databases (Brock et al., 2017; Conle and Hennemann, 2002; Giglio-Tos, 1897), as well as personal communication with Lívia Cordeiro. The geographic distribution of U. borellii and Paxiximyia sulmatogrossensis n. gen. and n. sp. was mapped with Quantum GIS version 1.8.0 software (Quantum GIS, 2012).

Taxonomy

Family Tachinidae
Subfamily Exoristinae
Tribe Blondeliini

Paxiximyia Toma & Olivier, n. gen. (Figs. 1–8).

Type species. Paxiximyia sulmatogrossensis n. sp., by present designation.

Recognition. In the Central American key to Tachinidae (Wood and Zumbado, 2010), the specimens P. sulmatogrossensis n. sp. run to Blondeliini with hairy prosternum in couples 115–119, but do not fit into any of these specific couples. In Wood’s (1985) key, the specimens run to Meigenielloides Townsend, 1919, but Paxiximyia n. gen. differs from this genus in having distinctly longer anteriormost reproductive orbital setae than uppermost frontal setae and vein R₄₊₅ being setose almost to crossvein r-m.

Within the Oedematocera-group, Paxiximyia n. gen. appears similar to Neophasmophaga and Miamimyia because both veins R₁ and R₄₊₅ are dorsally setose on at least the basal third. The new genus is distinguished from these two genera by lack of proclinate orbital setae on fronto-oral plate, facial ridge with a few setae on lower third above vibrissa, and a pair of abdominal discal setae on tergites 3 and 4. Male Paxiximyia n. gen. genitalia is distinctive with inner cerci surface deeply excavated and haired and surstyli elongated and narrow, precluding its consideration as congeneric with Neophasmophaga and Miamimyia species or species pertaining to other Oedematocera-group genera with known genitalia morphologies.

Paxiximyia n. gen. differs from Anisia and Phasmophaga by Katepisternum with three setae and mid tibia with two antedor dorsal setae. According to Wood (1985), Tettigonioptera Guimarães, 1978 appears to belong to Anisia. He suggested that the absence of proclinate orbital setae and narrow froms in the male would not be enough to separate them. Wood (op. cit.) included Tettigonioptera in the range of variation presented by Anisia species, but he did not formalize the synonymy. Paxiximyia n. gen. can be differentiated from Tettigonioptera in the same manner as Anisia. The new genus differs from Miamimyiopt in proclinate orbital setae absent on fronto-oral plate, facial ridge with a few setae on lower third above vibrissa, a pair of median marginal setae on syntergite 1 + 2 and tergite 3, and a pair of median discal setae on tergites 3 and 4.

Description. Characteristics follow Wood (1985). Head (Figs. 1–3): Fronto-oral plate without proclinate orbital setae and with two reclinate orbital setae, anteriormost reclinate orbital seta distinctly longer than posteriormost reclinate orbital seta and uppermost frontal seta; ocellar setae long and divergent; eye bare; parafacial bare; lower margin of face at level of vibrissa not visible in profile; arista longer than first flagellomere; facial ridge with a few setae on lower third above vibrissa; subvibrissal ridge short with two or three setae; anteroventral margin of gena bearing at least three stout setae. Thorax (Figs. 1, 3, 4): prosternum with a few fine setulae; proepisternum bare; postpronotum with three basal and one short anterior setae, middle basal seta displaced slightly forward in line with outer basal and anterior setae; katepisternum with three setae, anteroventral seta shorter and weaker than anterior and posterior setae; scutellum with one pair each of basal, lateral, subapical, apical, and discal setae, lateral setae subparallel and shorter than basal and subapical setae, the latter ones slightly divergent, apical setae very short, setula-like and subparallel; fore tibia with two posterior setae; mid tibia with two antedor dorsal setae; dorsally vein R₁ setose on basal half and vein R₄₊₅ setose almost to crossvein r-m; ventrally one to three setulae at bifurcation of veins R₂₊₃ and R₄₊₅; veins R₄₊₅ and M both ending before wing apex. Abdomen (Fig. 3): middorsal depression not reaching hind margin of syntergite 1 + 2; abdominal syntergite 1 + 2 and tergite 3 each with one pair of well-developed median marginal setae and one pair of lateral marginal setae; tergite 4 with a row of median marginal setae; tergites 3 and 4 each with one pair of median discal setae. Terminalia (Figs. 5 and 6): Epiphallus developed; cerci with deeply excavated and haired inner surface, well separated almost along entire length and fused basally in posterior view; surstyli elongated and narrow.

Etymology. The root of the compound name Paxiximyia refers to the locality where the hosts of this tachinid fly were collected (“Morro do Paxixi”). The suffix “myia” is the Greek word for fly.

Remarks. In the New World, there are some records of Polyneoptera parasitism by genera in the Oedematocera genus group. Phasmophaga has been reared from Agathemera crassa (Blanchard, 1851) and Anisomorpha buprestoides (Stoll, 1813) (Phasmatodea: Agathemidae and Pseudophasmatidae) (Neff and Eisner, 1960; Cortés, 1968). Anisia has been reared from Schistocerca americana (Drury, 1770), S. paranesis (Burmeister, 1861), Romalea microptera (Beauvois, 1817), and Cethophilus latibuli Scudder, 1894 (Orthoptera: Acrididae, Romaleidae and Gryllidae) (Aldrich, 1927, 1928; Guimarães, 1977; Wood and Zumbado, 2010), recorded in cockroaches Parcoblatta sp. or spp. (Blattodea: Ectobiidae) (Gemeno et al., 2002) and in earwigs (Forficulidea: Forficulidae) (Parkar, 1953). Tettigonioptera is known as parasitoid of Cycloptera aurantiofalia (Stoll, 1878) (Orthoptera: Tetrigoniidae) (Guimarães, 1978). Miamimyiopt hosts are unknown, while Miamimyia and Neophasmophaga are documented as parasitoids of the cockroach, Periplaneta americana (Linnaeus, 1758)
Figs. 1–4. Paxiximyia sulmatogrossensis Toma & Olivier n. gen. and n. sp. Paratype male: (1 and 3) body in lateral view; (2) head in frontal view; (4) left wing, in detail setae on veins R₁ and R₄₊₅. Scale bar: 2 mm.

(Blattodea: Blattidae), and the walking stick, Prisopus sacratus (Olivier, 1792) (Phasmatodea: Prisopodidae), respectively (Arnaud, 1978; Guimarães, 1982). The new taxon described here, P. sulmatogrossensis n. gen. and n. sp., reared from U. borellii, is the first record of parasitism in this host by a tachinid fly.

Paxiximyia sulmatogrossensis Toma & Olivier, n. sp. (Figs. 1–8).

Type locality. Morro do Paxixi, Aquidauana, Mato Grosso do Sul, Brazil (20°27’00.5”S/55°37’20.8”W).

Description. Male. Measurements (mm): body length: 9.82; wing length: 7.06.

Coloration (Figs. 1–4): Head pale yellow in background color covered with silvery pruinosity, except vertex, ocellar triangle, and
fronto-orbital plate appearing brown from certain angles, overlaid with pale golden or golden pruinosity; frontal vitta dark brown; scape reddish brown; pedicel and first flagellomere dark brown, except apex of the pedicel and basal fourth of the first flagellomere yellowish; palpus yellow; proboscis brown; thorax dark brown in background color, except postpronotum and sides of scutum and scutellum lighter brown. Thorax covered with silvery pruinosity, except postpronotum, scutum, and scutellum pale golden pruinose. Scutum in posterodorsal view with four dark brown stripes, two lateral on the dorsocentral rows and two lateral on the acrostichal rows, the latter not reaching posterior margin of scutum; wing hyaline with yellowish veins; calipters whitish; halter yellow; leg black with moderate silvery pruinosity on tibia; abdomen dark brown in background color overlaid with silvery pruinosity (sometimes with slightly gold pruinosity at certain angles) on at least basal half of syntergite 1 + 2 and tergites 3, 4, and 5, except dorsal depression of syntergite 1 + 2.

Head (Figs. 2, 3): Vertex about 0.24 head width in dorsal view; inner vertical seta developed and slightly reclinate; outer vertical seta about 0.57 length of inner vertical seta; ocellar seta almost as long as inner vertical seta; fronto-orbital plate with about seven setae, the uppermost seta shorter; the lowermost seta at the level of apex of pedicel; two reclinate orbital setae, the anteriormost about 1.6× length of the posteriormost; first flagellomere length about 2.6× of pedicel; aristomere 3 length about 1.7× of first flagellomere; facial ridge with setae on lower fourth, setae 0.2–0.32 length of vibrissa; subvibrissal ridge with one or two setae; ventral margin of gena with three or four stout setae. Thorax (Figs. 5 and 6): Postpronotum with three basal and one short anterior setae, the middle basal seta displaced slightly frontward in line with the outer basal and the anterior setae; acrostichal setae 2 + 3 with posteriormost presutural seta about 1.4× length of preceding seta and posteriormost postsutural seta about 1.6× length of preceding seta; dorsocentral setae 2 + 3 with posteriormost postsutural seta about 1.3× length of preceding seta; intra-alar setae 1 + 3 or 2 + 3, anteriormost presutural if present less than half length of the posteriormost postsutural seta; the posteriormost postsutural seta about 1.45× length of preceding seta; supra-alar setae 0 + 3 with the second postsutural seta longest, about 3.5× length of preceding seta and about 2.2× length of posteriormost seta; three postalar setae, the second seta longest, about twice length of preceding seta and about three times length of posteriormost seta; intrapostalar seta slightly shorter than the posteriormost postsutural acrostichal seta; katepisternum with three setae: the anterior and posterior katepisternal setae longer and stouter than anteroventral katepisternal seta; scutellum with the lateral scutellar setae about half as long as the subapical setae, but longer than the apical setae; mid tibia with one long anterodorsal seta, flanked by one or two smaller setae; hind tibia with three or four stout anterodorsal setae increasing in size from the base to the middle of the tibia, followed by the fourth minor seta (sometimes absent); hind tibia with one long posteroventral seta and two or three smaller and more basal
setae. Abdomen and Terminalia (Figs. 3, 5, 6): Syntergyte 1+2 and tergite 3 with one pair of median marginal setae and one pair of lateral marginal setae; tergite 4 and 5 with a row of median marginal setae; tergites 3 and 4 with one pair of discal setae; tergite 5 with a row of discal setae close to the row of median marginal setae on this tergite; sternite 5 with U-shaped median cleft; pregonite tapering and slightly curved outward and downward; in profile cercus broad along its entire length, slightly wider than dorsal portion of epandrium and rounded apically; inner surface of the cerci with a patch of short hairs on its posterior border and apical third; anterior margin of the cerci folded inwards and visible in posterior view; in profile surstyli slightly arched, about 0.8 length of cerci.

Female: unknown.

Measurements of type specimens. Type specimens withered after mounting and only one specimen preserved its body length, which was used in the description. The other measurements (mm) after the drying were (n = 4): body length: 7.77–8.09 (7.89); wing length: 6.44–7.05 (6.67).

Description of puparium (Figs. 7 and 8): Measurements of puparia (n = 2): Puparium I. length = 7.23 mm, width = 3.02 mm; Puparium II. length = 7.30 mm, width = 2.87 mm. Puparium reddish brown; subelliptical with both ends rounded; posterior spiracles narrowly separated, only slightly raised above the surface, located above horizontal axis, color dark brown except for three reddish brown slits, each one located on top of a small ridge. Anal opening far below posterior spiracles.

Etymology. The specific epithet refers to the Brazilian state in which the host was collected.

Geographic distribution. Brazil (Mato Grosso do Sul: Aquidauana) (Fig. 9).

Remarks. Emergence and viability of the tachinid larvae: five larvae emerged from an aperture (length = 7.40 mm) between second and third abdominal pleurites on the left side of the body (length = 75.00 mm) of a female host (Fig. 10) (ZUFMSPHA00001), three on January 20 and two on January 21, 2017. All larvae from the female host became adult flies. Three larvae emerged from an aperture (length = 3.70 mm) in the first abdominal pleurite on the
cence of adult flies was 14–15 days.

Geographical distribution of the host. *Urucumania borellii* was described from Paraguay in 1897 by Giglio-Tos and all records before the present study were from Asunción, San Pedro, San Bernardino, and Puerto Bertoni in that country and Cuiabá in the state of Mato Grosso, Brazil. This paper presents new records from Brazil of specimens collected and/or photographed in the following cities: Aquidauana, Campo Grande, Bodoquena (Cordeiro, L., pers. comm., April 2017) (Fig. 9). The records obtained for this walking stick species are mainly from Cerrado phytophysiognomies, such as “cerradão”, but also from riparian forests and transitions between plateau (Cerrado) and lowlands (Pantanal), for example in Aquidauana. Probably *U. borellii* is widely distributed in the Cerrado domain, which would potentially increase the geographic distribution of *P. sulmatogrossensis* n. gen. and n. sp.

Conflicts of interest

The authors declare no conflicts of interest.

Acknowledgments

The authors thanks Juliana Chamorro Rengifo and Paula Jéssica Costa for assisting with host collection; Lívia Cordeiro for providing information about the presence of *U. borellii* in the Serra da Bodoquena region; Andressa Figueiredo de Oliveira for taking the photos of adult walking sticks; the Ecology Laboratory at UFMS for providing access to the stereomicroscope and cameras; and *Instituto Chico Mendes de Biodiversidade* for providing collection permission; Kenji Toma and Zoraida Fernández for reviewing an earlier draft of the manuscript; James R. Welch for native language review.

References

