Asteracantha longifolia (L.) Nees, Acanthaceae: chemistry, traditional, medicinal uses and its pharmacological activities - a review

Nagendra Singh Chauhan,* V. K. Dixit

Department of Pharmaceutical Sciences, Dr. H. S. Gour University, Vishwavidyalaya Campus, Sagar M.P. 470003 India.

INTRODUCTION

Rasayana is the special category of the drugs of Indian system of medicine Ayurveda. The word Rasayana is composed of two words ‘Rasa’ meaning elixir and ‘Ayana’ meaning house. The word therefore signifies property of the plant that helps to rejuvenate the system. Many plants have been broadly used as ‘Rasayana’ drugs in Ayurveda for the management of neurodegenerative diseases, as rejuvenators, immunomodulators, aphrodisiac and tonic (Thakur et al., 2007). The Asteracantha longifolia (L.) Nees, Acanthaceae, finds mention in Ayurvedic treatise like ‘Sushruta Samhita’ and ‘Charak Samhita’ as Rasayan or rejuvenator. A. longifolia is described in ayurvedic literature as Ikshura, Ikshugandha, and Kokilasha “having eyes like the Kokila or Indian Cuckoo”. They are also constituent of ayurvedic formulation “Striratavallabhpugpak” and “Rativardhanyog” described in ancient text to improve sexual behaviour and as a general tonic (Vaidya, 1970).

The present article includes the detailed exploration of pharmacological and phytochemical properties of A. longifolia as an attempt to provide a direction for further research.

Synonyms

Hygrophila auriculata (Schumach.) Heine., Hygrophila spinosa T. Anders.

Vernacular names

Sanskrit: Iksura; Bengali: Kuliyakhara; Gujarati: Ekharo; Hindi: Talmakhana; Malyalam: Nirmuli; Marathi: Talmakhana; Tamil: Golmedi and Urdu: Talmakhana.

Geographical sources

The plant is widely distributed throughout India, Srilanka, Burma, Malaysia and Nepal.
General description

It is a spiny, stout, annual herb, common in water logged places. Leaves subsessile, oblong-lanceolate or linear lanceolate, spines yellowish brown, 2-3 cm long, flower yellowish brown, fruit two celled, linear oblong, compressed about 8 cm long, pointed, 4-8 seeded (Figure 1). Seed ovate, flat or compressed, 0.2-0.25 cm long and 0.1-0.15 cm wide, hairy but appearing smooth; when soaked in water immediately get coated with mucilage, light brown: taste slightly bitter and odour not distinct (The Ayurvedic Pharmacopoeia of India, 1999).

Quantitative standards

Foreign matter: Not more than 2.0 percent. Ash: Not more than 8.5 percent. Acid-insoluble ash: Not more than 3.5 percent. Ethanol soluble extractive: Not more than 13.0 percent. Water soluble extractive: Not more than 17.0 percent (Gupta et al., 2006).

Taxonomical information

Class: Equisetopsida C. Agardh
Subclass: Magnoliidae Novák ex Takht.
Superorder: Asteranae Takht.
Order: Lamiales Bromhead
Family: Acanthaceae Juss.
Genus: Asteracantha Nees
Species: Asteracantha longifolia (L.) Nees

Traditional uses

The whole plant, roots, seeds, and ashes of the plant are extensively used in traditional system of medicine for various ailments like rheumatism, inflammation, jaundice, hepatic obstruction, pain, urinary infections, oedema and gout. It is classified in ayurvedic system as seethaveeryam, mathuravipaka and used for the treatment of premeham (diabetes), athisaram (dysentry) etc (Nadkarni, 1978; Chopra et al., 1986).

Pharmacological activities

Hypoglycemic activity

Ethanolic extract (Al Eth) of aerial parts of A. longifolia (100 and 250 mg/kg body weight) when administered to rats for three weeks showed significant reduction in blood glucose level. There is also decrease in thiobarbituric acid reactive substances (TBARS) and hydroperoxide in both liver and kidney. The treatment with Al Eth significantly increased the glutathione (GSH), glutathione peroxidase (GPx), glutathione S-transferase (GST) and catalase (CAT) in the drug-treated group, which is comparable to the control group. Al Eth treated rats also showed decreased lipid peroxidation that is associated with increased activity of superoxide dismutase (SOD) and catalase (Vijayakumar et al., 2006). Fernando et al. (1991) investigated the effects of hotwater extracts of A. longifolia whole plant material on the glucose tolerance of normal human subjects and maturity onset diabetic patients. Administration of aqueous extract of A. longifolia to rats prior to glucose loading showed hypoglycemic action as it was significant increase in the glycogen content of liver and muscle and a significant increase in triacylglycerol content of adipose tissue in comparison with control rats. However, the plant extract had no effect on the gluconeogenic capacity of the kidney or intestinal glucose absorption (Fernando et al., 1998, Fernando et al. 1989).

Hepatoprotective activity

The aqueous extract of whole plant and root of A. longifolia possesses hepatoprotective and antioxidative properties against CCl4- and paracetamol-induced hepatotoxicities (Hewawasam et al., 2003, Usha et al., 2007). Petroleum ether extract of A. longifolia affects liver and kidney functions and metabolism and hematological parameters in high doses (40 and 80 mg/kg) whereas low weekly dose (20 mg/kg) and low and moderate daily/therapeutic dose (2 and 4 mg/kg) does not exhibit any appreciable toxic action (Mazumdar et al., 1996). Methanolic extracts of the seeds show hepatoprotective activity against paracetamol and thioacetamide intoxication in rats (Singh & Handa, 1999). Ahmed et al. (2001) studied the against of seeds against chemically induced hepatocarcinogensis in Wistar rats. Methanol extract of seed showing antitumor promoting potential inhibit hepatocarcinogenesis in Wistar rats, increase GPx and CAT, ODC. Shivashangari et al. (2004) studied the protective efficacy of A. longifolia on acetaminophen-induced liver damage in rats. Shanmugasundaram & Venkataraman (2006) studied the aqueous extract of the roots for hepatoprotective in CCl4-induced liver toxicity in rats and in vitro antioxidant activity using ferric thiocyanate (FTC) and thiobarbituric acid (TBA) methods. Shailajan et al. (2005) showed the whole plant slurry of A. longifolia was hepatoprotective activity against CCl4 induced liver dysfunction in rats. Later they also reported that the slurry, aqueous extract and ethanolic extract of whole plant powder showed hepatoprotective effect against galactosamine induced hepatotoxicity (Shailajan et al. (2007).

Anti-nociceptive

The aqueous extract of aerial parts and root for its anti-nociceptive property using both chemical and thermal methods of nociception in mice (Shanmugasundaram & Venkataraman 2006).
Venkataraman, 2005). Chloroform and alcoholic extracts of *A. longifolia* leaves have anti-inflammatory, analgesic and antipyretic activities (Patra et al., 2009a; 2009b).

Antimicrobial activity

Methanol extracts of *A. longifolia* show antimicrobial activity specially against *Burkholderia pseudomallei* strain (Samy, 2005). Petroleum ether, chloroform, alcoholic and aqueous extracts of leaves of *Hygrophila spinosa* produced significant anthelmintic activity, both alcoholic and chloroform extracts showed significant antibacterial activity as compared to other extracts (Patra et al., 2008).

Haematopoietic activity

Petroleum ether extract of root from *A. longifolia* increases WBC count significantly (Mazumdar et al., 1996). Ethanolic extract (100 and 200 mg/kg, p.o.) of the aerial parts of *H. spinosa* significantly increased the haemoglobin, haematocrit, RBC and total WBC, as compared with vehicle treated control rat. In anemic male albino rats, the extract significantly increased haemoglobin, haematocrit and RBC count (Gomes et al., 2001). Petroleum ether and chloroform extract of leaves show haematopoietic activity as it significantly increases erythrocyte count, leukocyte count, and haemoglobin count (Pawar et al., 2006a; 2006b).

Antitumor

Methanol extract of seed shows inhibition of hepatocarcinogenesis in Wistar rats. Increase Gpx and CAT, ODC (Ahmed et al., 2001). Petroleum ether extract from *A. longifolia* root exhibited antitumor activity in Ehrlich ascites carcinoma and Sarcoma-180 bearing mice. Extract suppressed significantly the tumor fluid volume at the end of three weeks experiment. It decreased about 50% of packed cell volume and increased life span of EAC/S-180 bearing mice in a day dependent manner. It also repressed the rapid increase of bodyweight of tumor bearing mice (Mazumdar et al., 1997). *Hygrophila spinosa* hydroalcoholic extract of aerial part could prevent or delay the development of breast cancer in the rats (Pattanayak & Sunita, 2008).

Aphrodisiac activity

The ethanolic extract of seeds shows androgenic as well as improvement of sexual behaviour of rat in dose dependent manner, it also improve the histoarchitecture of testis and increase the concentration of sperm count in epididymis and also increase testosterone level (Chauhan et al., 2009, 2010).

Phytochemical studies

The phytochemical investigation of the *A. longifolia* as carried out so far contains various compounds with varying structural patterns. *A. longifolia* seed oil pale yellow in colour about 23% contain about 72% of linoleic, 10% of oleic, 12% of stearic, and 6% of palmitic and myristic acids (Godbole, 1941). Mineral elements Mn, Mg, Zn, Ca, Fe, Ni, Cr, Na,K, Al and Sr were found in the *A. longifolia* determined by using Flame photometer, Atomic Absorption Spectrometer and Inductively Coupled Plasma (Sondhi & Agarwal, 1995). Plant also contains minerals Fe, Cu, Co (Choudhary & Bandyopadhyay, 1998). Root contain stigmaticerol (Quisim & Dutta, 1967). Aerial parts of *A. longifolia* have been reported to contain lupeol (1), stigmasterol and butelin (2) while the seeds of the plant are reported to contain mainly fatty acids (Quisim & Dutta, 1967). Petroleum ether extract of *A. longifolia* root found lupeol and lupene (3) (Mazumdar et al., 1999). Misra et al (2001) isolated the two aliphatic esters (25-oxo-hentriacontanyl acetate 4, and methyl 8-n-hexyltetrascianate, (5) and betulin from the aerial parts of *A. longifolia*. The HPTLC estimation of lupeol and sitosterol in various part like root, leaves, seeds and stems was reported in solvent system toluene:ethylacetate:methanol 15:3:1.5 (% v/v) (Sunita & Abhishek, 2008). The whole plant contains lupeol, stigmasterol, an isoflavone glycoside, an alkaloid and small quantities of uncharacterized bases. From the seeds isolation of asterol I, II, III, and IV, asteracanthine and asteracantherine have been reported (Basu & Rakhit, 1957a, 1957b). Flowers contain apigenin 7-O-glucuronide (Balraj & Nagarajan, 1981; 1982). Also, amino acids histidine, lysine and phenyl-alanine have been detected in the seeds. From the plant collected from Saharanpur, lupeol, betulin and stigmasterol isolated; betulin was found to be absent in aerial parts and stigmasterol in roots (Gupta et al., 1982).

Antioxidant activity

The methanolic extract of leaves contain phenolic and flavonoid shows promising antioxidant activity (Sawadogo et al., 2006). Aqueous extract of leaves of *A. longifolia* shows potent antioxidant activity in various in vitro model (Dasgupta & De, 2007).

Miscellaneous activity

Ethanolic extract of whole plant showed diuretic effects in rats (Sarfaraj Hussain et al., 2009).

Pharmacognostic studies

Plants having spines, having perennial root stocks; bluish-purple 2-lipped flower; leaves - sessile, multichambered thick-walled sclerotic cell, among the epidermal cells of midrib, large flat bunch-shaped calcium carbonate crystals and needle-shaped calcium oxalate crystals in the epidermal cells of lamina and in the cortical cells of midrib respectively; stomata-caryophyllaceous; stomatal index on upper surface: 23.46±47); lower surface: 27.44±52); palisade ratio: 10.23±19) and vein islet number: 25.8±69) (Datta & Das, 1969).

Formulation

Speman a polyherbal formulation containig *A. longifolia* improving number and morphology of sperms (Agrawal & Kulkarni, 2003).

Tissue culture

High Plant regeneration frequency in *A. longifolia* was achieved from leaf explant implanted on MS basal medium supplemented with NAA (0.5 mg/L) + BA (2.0 mg/L) through intervening callus phase. Protein and total soluble sugar contents were maximum during organogenesis and multiple shoot induction phase compared with non-organogenic callus and root induction phase. Esterase and catalase activities were maximum during organogenic differentiation, while activities were minimum at non-differentiated callus stages. Peroxidase activities were higher during rhizogenesis whereas acid phosphatase activities were high during organogenesis and declined during rhizogenesis (Panigrahi et al., 2007).

CONCLUSION

A. longifolia has been used successfully in traditional Ayurvedic medicine for centuries, more clinical trials should be conducted to support its therapeutic use. *A. longifolia* is investigated for many pharmacological activities but still there is paucity for the mechanism and bioactive principles that are responsible for the activities.
Further researches in view of fulfilling the need of standardization for the various constituents and extracts are desired.

ACKNOWLEDGMENT

One of the author (NSC) thanks AICTE New Delhi for providing National Doctoral fellowship.

REFERENCES

