INTRODUCTION

Plants are unique in their ability to produce an extraordinary array of different secondary metabolites. Many of these metabolites have medicinal or toxic attributes (Barthelson et al., 2006). Form many centuries, the leaves and seeds of Amaranthus species such as A. retroflexus have been sources of food for native people from North and South America to Asia, Africa and Europa (Pacifico et al., 2008). In northern Iran leaves of redroot pigweed are eaten in soups. This plant has not been investigated for toxicity so far. There is a possibility that this plant can be toxic to human. Cases of poisoning have been observed in veterinary reports. The toxic effects due to the use are associated with nephrotoxicity. Ingestion of A. retroflexus causes perirenal to toxic nephrosis in the swine and the cattle (Maxie, 2007). Acute renal failure and perirenal oedema has been described in cattle, pigs, horses and sheep associated with the ingestion of A. retroflexus (Last et al., 2007). In microscopic lesion; necrosis of proximal and distal tubules in poisoned cattle was observed (Plumlee, 2004). It contains an unknown toxicant that causes renal tubular nephrosis. Histopathological findings in forty seven of poisoned cows were tubular degeneration, necrosis and regeneration with interstitial fibrosis and tubular proteinosis (Torres et al., 1997).

Nephrotoxic insults may result in cellular injury. Various clinical and laboratory approaches have been used to evaluate renal toxicity. In vitro toxicology analysis using cell cultures has been developed into an important alternative for early toxicity assessment. In order to determine the effects of plant extracts cell culture system, vertebrate cells cultured in vitro have been grown in monolayer on artificial substrate (Saad et al., 2006). With regard to the...
in vitro renal system, the porcine cell line has been used to assess renal toxicity mechanisms. Rodent primary renal cell lines were also used for investigating nephrotoxicity of anticancer drugs (Li et al., 2006). Moreover, in vitro cytotoxic activity of different extracts or drugs are usually assessed by MTT mitochondrial reduction (Sabino et al., 1999; Shoeb et al., 2007). Therefore, we used bovine renal cells as models for toxicity analysis with MTT assay.

Also, the brine shrimp have been used to detect general toxicity, in teratology screens, ecotoxicology and detection of plant extract toxicity for the past 30 years (Carballo et al., 2002). It has been established as safe, practical and economic method for determination of bioactivity of plant product (Silva et al., 2007; Subhan et al., 2008). This present study was conducted to assess toxicity of leaves by brine shrimp lethality assay and cytotoxicity activity against bovine kidney cells.

MATERIAL AND METHODS

MTT assay

Bovine kidney cells were obtained from Iran’s Razi Institute (RBK30). Cells were maintained in Dulbecco’s Modified Eagle’s Medium (DMEM) at 37 °C in a humidified atmosphere and 5% CO₂. The cells were seeded in a 96-well microplate, cells were exposed to various concentrations of the plant extract (100 ppm-0.1 ppm) in fresh serum-free medium after 48 hours. Plant extraction was filtered through filter before using. Following removal of the plant extracts from each well, cells were washed in phosphate-buffered saline. MTT was added to each well and incubated for a further 3 h. Then, the medium was removed and the cells were incubed with isopropanol to dissolve the formazan crystals. The optical density was measured at 492 nm with 620 nm as a reference and cell viability was normalized as a percentage on control.

RESULTS

The results of the brine shrimp lethality test are presented in Figure 1. The LC₅₀ values were analyzed by regression and found the concentration which needed to die half the nauplii in brine shrimp test. LD₅₀ values for *Artemia salina* was 1700 ppm.

DISCUSSION

Plants have complex mixtures of terpenes, alkaloids, saponins and other chemicals (Saad et al.,
Biological screening of *Amaranthus retroflexus* L. (Amaranthaceae)

2006). Safety assessment should be tested for medical plants or plants for human nutrition. Therefore, national health authorities are beginning to express concern over the safety and efficacy of these plants. To our knowledge, there are no reports about risk assessment of *A. retroflexus*. In this study we present primary results obtained from *A. retroflexus*, engaged for brine shrimp lethality test and MTT bioassays.

The nephrotoxic principals of *A. retroflexus* have not yet been identified, the plants often contain high levels of nitrate and oxalate but usually neither nitrate nor oxalate poisoning occurs and does not produce perirenal edema (Maxie, 2007). Recently, four new sesquiterpene glucosides were isolated from the methanolic extracts which have a moderate phytotoxic activity down to 10^{-9} M (Fiorentino et al., 2006). Among different cytotoxicity tests, the radioisotope incorporation and MTT assays are most suitable (Lee et al., 2000). Mitochondria are essential organelles that play an important role in cell metabolism. The MTT assay represents an important method to evaluate mitochondrial damage (Sabino et al., 1999). In this work, we evaluate the MTT reduction activity of renal cell to verify the cytotoxic effects of *Amaranthus retroflexus*. The loss of viability was clearly evident after 24 h, exposure.

The brine shrimp assay is one of the best and rapid biological and toxicological assays for all the labs (Kanwar, 2007). The extracts are considered inactive when LC$_{50}$ values greater than 1000 ppm (Alanis-Garza et al., 2007). The evaluation of using *Artemia salina* indicates general toxicity sometimes, further and specific investigations will be required. Based on the results, extract of *Amaranthus retroflexus* was not toxic for *Artemia salina* but data which is taken of basal cytotoxicity, suggest that *Amaranthus retroflexus* has direct toxicity on renal cells. This suggests that the toxins in *Amaranthus retroflexus* extracts may be more specific to renal cells.

In conclusion, this report confirms *Amaranthus retroflexus* only is toxic in renal cell culture. Therefore, the extract of this plant has cytotoxic effects and more specific to renal cells. In spite of the relatively artificial conditions imposed by in vitro studies, compiled data demonstrating that the *in vitro* uptakes of various organic acids, bases, sugars, amino acids, and inorganic electrolytes were essentially identical to those under *in vivo* conditions (Lu, 1996). Nevertheless, basal cytotoxicity represents the most fundamental and most common form of cellular toxicity. An important function of cells *in vivo* is their ability to metabolize chemicals to more or less toxic compounds (Walum, 1998). Some *in vivo* study such as urinary concentrating ability and kidney weight are the most sensitive and consistent indicators of nephrotoxicity (Lu, 1996). Therefore, other evaluation of nephrotoxicity *in vivo* condition is also needed.

ACKNOWLEDGMENTS

We thank Mr.Rahimi for his valuable help.

REFERENCES

Rev Bras Farmacogn 17: 155-159.