Ultrasonographic Evaluation of Uterine Involution in the Early Puerperium

Avaliação ultrassonográfica da involução uterina no puerpério precoce

Juliana Hocevar Kristoschek¹ Renato Augusto Moreira de Sá¹,² Fernanda Campos da Silva³ Guillermo Coca Vellarde¹

¹Medical Sciences Post Graduation, Universidade Federal Fluminense, Niterói, RJ, Brazil
²Clinical Research Unit, Instituto Fernandes Figueira, Fiocruz, Rio de Janeiro, RJ, Brazil
³Universidade Federal do Estado do Rio de Janeiro (UNIRIO), Rio de Janeiro, RJ, Brazil

Address for correspondence Renato Augusto Moreira de Sá, PhD, Unidade de Pesquisa Clínica – Av. Rui Barbosa 716, Flamengo, Rio de Janeiro, RJ, Brazil (e-mail: rsa@cpdt.com.br).

Abstract

Purpose Our aim was to describe the changes observed by ultrasonography in uterine dimensions during the early puerperium among women who experienced an uncomplicated puerperium. Additionally, the influence of parity, mode of delivery, breastfeeding and birth weight on uterine involution was evaluated.

Methods Ninety-one patients underwent an ultrasound examination on days 1 (D1), 2 (D2) and 7 (D7) of the postpartum period. The longitudinal, anteroposterior and transverse uterine diameters were measured, and the uterine volume was calculated by the formula: longitudinal diameter (LD) X anteroposterior diameter (APD) X transverse diameter (TD) X 0.45. The thickness and length of the uterine cavity were also measured.

Results The uterine volume and the LD, APD and TD decreased by 44.8%, 20.9%, 11.8% and 20.0% respectively. The uterine cavity thickness was reduced by 23%, and the length of the cavity was reduced by 27.2% on D7. Uterine involution was correlated inversely with parity when the day of the postpartum period was not taken into account \(p = 0.01 \). However, when the uterine involution was correlated to parity separately, with D1, D2 or D3, no correlations were found. A significant difference occurred at D2, when it was found that the uterus had a smaller volume following cesarean section compared with vaginal delivery \(p = 0.04 \). The high birth weight and breastfeeding were significantly related to uterine involution \(p \leq 0.01 \) and \(p = 0.04 \).

Conclusion The sonographic evaluation of the uterus in the early puerperium should consider birth weight, breastfeeding and parity, as well as the delivery route on D2, to identify abnormalities related to uterine involution.

Keywords
► postpartum period
► uterus
► ultrasonography

Resumo

Objetivo Descrever as alterações observadas pela ultrassonografia nas dimensões uterinas durante o puerpério precoce em mulheres com evolução puerperal não

received
May 27, 2016
accepted after revision
January 12, 2017

ISSN 0100-7203.
Ultrasonographic Evaluation of Uterine Involution in the Early Puerperium

Kristoschek et al.

Introduction

During the postpartum period, the uterus, which weighs over 1 kg immediately after parturition, undergoes a physiological involution and returns to the non-pregnant condition. The process of involution, which is one of the main characteristics of the postpartum period, may be affected in pathological conditions such as uterine infection and hemorrhage. Both are main causes of maternal death worldwide; therefore, a correct diagnosis is of paramount importance.

The uterine involution has been previously evaluated with ultrasonography when ultrasound was introduced into the clinical practice. When ultrasound was introduced into the clinical practice of obstetrics, the first organs to be examined by ultrasonography were the first organs to be examined by ultrasonography when ultrasound was introduced into the clinical practice of obstetrics. When ultrasound was introduced into the clinical practice of obstetrics, the first organs to be examined by ultrasonography were the first organs to be examined by ultrasonography when ultrasound was introduced into the clinical practice of obstetrics. When ultrasound was introduced into the clinical practice of obstetrics, the first organs to be examined by ultrasonography were the first organs to be examined by ultrasonography when ultrasound was introduced into the clinical practice of obstetrics. When ultrasound was introduced into the clinical practice of obstetrics, the first organs to be examined by ultrasonography were the first organs to be examined by ultrasonography when ultrasound was introduced into the clinical practice of obstetrics. When ultrasound was introduced into the clinical practice of obstetrics, the first organs to be examined by ultrasonography were the first organs to be examined by ultrasonography when ultrasound was introduced into the clinical practice of obstetrics. When ultrasound was introduced into the clinical practice of obstetrics, the first organs to be examined by ultrasonography were the first organs to be examined by ultrasonography when ultrasound was introduced into the clinical practice of obstetrics. When ultrasound was introduced into the clinical practice of obstetrics, the first organs to be examined by ultrasonography were the first organs to be examined by ultrasonography when ultrasound was introduced into the clinical practice of obstetrics. When ultrasound was introduced into the clinical practice of obstetrics, the first organs to be examined by ultrasonography were the first organs to be examined by ultrasonography when ultrasound was introduced into the clinical practice of obstetrics. When ultrasound was introduced into the clinical practice of obstetrics, the first organs to be examined by ultrasonography were the first organs to be examined by ultrasonography when ultrasound was introduced into the clinical practice of obstetrics.

The high-resolution ultrasound equipment that is currently available increases the ability to distinguish the pathological from the normal uterine dimensions using ultrasound in the early puerperium following cesarean section or vaginal birth among women delivering term singleton infants who experienced an uncomplicated postpartum period. A secondary objective was to assess the influence of parity, mode of delivery, breastfeeding and birth weight on uterine involution according to the time at which it was assessed.

Methods

Ninety-one puerperal women who delivered singletons at term at Hospital Universitário Antonio Pedro and Maternidade Municipal Alexander Fleming in the city of Rio de Janeiro, Brazil, were invited to participate. The Committee of Ethics in Research from Universidade Federal Fluminense approved this study.

All the subjects received and signed the free and informed consent form. The exclusion criteria were the presence of postpartum infections (surgical wound or endometritis) or placental remains.

The patients underwent pelvic (transvaginal and trans-abdominal) ultrasound evaluations on days 1 (D1), 2 (D2) and 7 (D7) of the postpartum period. The ultrasound equipment used was Sonoace 8000 EX prime (Medison, Seoul, South Korea) with a 3.5-MHz convex transducer. The examinations included the assessment of: the longitudinal, anteroposterior and transverse uterine diameters; the
uterine volume (by the formula: longitudinal diameter (LD) X anteroposterior diameter (APD) X transverse diameter (TD) X 0.45); and the thickness and length of the uterine cavity. The patients were asked whether they were breastfeeding. Birth weight, mode of delivery and parity were obtained from the obstetric records.

All of the examinations were performed by a single researcher directly involved in the project. Data were analyzed with the statistical analysis program S-Plus 8.0 (Solution Metrics, Sydney, Australia). The studied parameters underwent a descriptive analysis, and the results were expressed as the mean and standard deviation (SD). Parametric and nonparametric mean comparison tests were used (analysis of variance [ANOVA] and Spearman’s rank correlation coefficient).

The authors declare no conflict of interest.

Results

Ninety-one puerperal women underwent pelvic ultrasonographic examinations on D1 and D2, and 57 women also had an exam on D7 (total of 239 assessments). The mean age was 24 years (range 13–41 years). The most prevalent self-reported skin color among the patients was racially mixed (n = 43), followed by women who reported being white (n = 26), and the less prevalent, who reported being black (n = 22). Thirty-seven women were primiparous, 24 were secundiparous, and 30 had had 3 or more parturitions. The average number of children was 2.3. Fifty-four deliveries were vaginal, and 37 deliveries were by cesarean section. The average birth weight was 3,184 g (range 2,125–4,320 g); 20 infants weighed more than 3,500 g, and only 10 weighed less than 1,500 g. Most puerperal women (n = 80) reported breastfeeding.

Fig. 1 illustrates the variations in the uterine volume and diameter for each day of the postpartum period evaluated; ANOVA was conducted, and a boxplot is displayed. a) In the first postpartum week, the mean uterine volume was decreased by 44.8%, corresponding to a reduction from 840 cm³ on D1 to 463 cm³ on D7. From D1 to D2, the mean uterine volume decreased less (from 840 to 717 cm³, corresponding to 14.6%). b) The mean uterine longitudinal diameter was 18.3 cm on D1. It decreased by 3.9% on D2 to an average of 17.6 cm, and it decreased by 20.9% on D7 to an

Fig. 1 Boxplot of the observed values of the uterine dimensions on D1, D2 and D7: (a) uterine volume (cm³); (b) longitudinal diameter (cm); (c) anteroposterior diameter (cm); and (d) transverse diameter (cm).
average of 14.5 cm. c) The uterine anteroposterior diameter decreased by 5.5% from D1 to D2, corresponding to an average change from 8.0 to 7.6 cm. Reductions in size were maintained until D7, when the average was 7.1 cm, corresponding to a reduction of 11.8%. d) The uterus transverse diameter was 12.5 cm on D1. The average diameter was 11.8 cm on D2, which represented a decrease of 5.1%, and the average was 10.1 cm on D7, which represented a decrease of 20.0%.

The variations in the dimensions of the thickness and length of the uterine cavity during the study period were also verified. a) In the first week postpartum, the uterine cavity thickness decreased by 23%; the average thickness decreased from 0.7 cm on D1 to 0.57 cm on D7. b) The uterine cavity length decreased by 27.2% during the same period; the average length decreased from 13.4 cm on D1 to 9.7 cm on D7.

When the factors that could influence the uterine involution were analyzed, it was found that parity, regardless of the postpartum day, was significantly correlated ($p = 0.01$) with uterine involution. Spearman’s rank correlation coefficient confirmed a direct correlation between parity and uterine volume, although it was weak ($r = 0.16$) (Fig. 2). However, no significant differences were found from the parity analyses when the time from birth was taken into account. The significance of the influence of parity on the uterine volume, regardless of time, resulted in an analysis of the overlapping regions that can be observed in Fig. 3. When the values obtained on D1, D2 and D7 are plotted on this graph, it is possible to observe a tendency to form an ascendant line, parallel to the axis of parity, on D1, D2 and D7; when analyzed separately, no such relation was found. Positive correlations were found among birth weight ($p \leq 0.01$), breastfeeding ($p = 0.04$) and uterine volume at all of the periods studied.

Table 1 presents the analysis of the effect of the delivery mode on uterine involution according to time. Vaginal deliveries and deliveries by cesarean section yielded similar uterine volumes. The only significant difference occurred on D2, when the uterine volume was found to be smaller in women who underwent delivery by cesarean section ($p = 0.044$).

Discussion

Since the introduction of ultrasonography into the obstetric practice, performing non-invasive investigations of the uterus was made possible. Several authors have examined the uterus by ultrasonography after vaginal births. Sokol et al. performed ultrasound exams 48 hours after vaginal birth. Edwards and Ellwood evaluated 40 patients on postpartum days 7, 14 and 21, and Al-Bdour et al. evaluated women on postpartum days 1, 7, 14, 28 and 56. Defoort et al. performed ultrasound examinations in the first 24 hours after vaginal birth, and found a significant correlation between parity and uterine involution. Many authors evaluated uterus involution after birth using a three-dimensional (3D) ultrasound. Belachew et al. studied using the transabdominal ultrasound on days 1, 7 and 14, and the transvaginal ultrasound on days 28 and 56 postpartum in 63 women after spontaneous delivery. The median uterine volume decreased from 756 cm3 on day 1 postpartum to 440 cm3 on day 7. The mean uterine volume was decreased by 41.8%, and these results are similar to our data. Wataganara et al. found a high correlation between two-dimensional (2D) and 3D ultrasound estimations of the uterine volume.

When we analyzed the influence of parity on the uterine volume, we found a significant direct correlation ($p = 0.01$),
regardless of the examination time. When the analysis of the
effect of parity on the uterine volume was performed accord-
ing to the examination time (D1, D2, and D7), no significant
correlation was found at any of the studied times, which is
similar to the results from the literature. Belachew et al13 also
found no significant difference (D1 and D7) using the VIRTUAL
imaging program (3D ultrasound technology). When we dis-
regard the influence of the examination time in the analysis, an
increase in parity is correlated with larger uterine volumes,
unlike when we evaluate each period of time separately.
Parity was not significantly correlated with the uterine
volume. Wataganara et al14 considered the uterine volume
to be independent of parity.

Diniz et al15 performed abdominal ultrasound evaluations
during the first 48 hours after childbirth. The mean volume of
the uterus was greater than our results when we compare with
D2.

The mode of delivery was analyzed by Negishi et al16 who
evaluated 319 puerperal women after vaginal birth and 72
after cesarean section, and found larger uterine volumes
after cesarean section. However, the results were not
statistically significant. Koskas et al17 postulated that dis-
crepancies between uterine measurements can occur due to
the differences among the surgical techniques and the doses
of oxytocin given following a cesarean section, which can be
different than those given to patients following a vaginal
birth. Bae et al18 evaluated uterine involution 2 and 6 weeks
postpartum. They showed differences in relation to delivery
mode and gestational age at delivery.

When evaluating birth weight, we observed a significant
direct correlation with the uterine volume ($p < 0.01$),
regardless of the examination time. Buisson et al,19 Wachs-
berg et al,10 Mulic-Lutvica et al,5 and Al-Bdour et al6 did
not find this correlation. Rodeck and Newton8 found a significant
correlation between the birth weight and the uterine cavity
length on the first postpartum day, but only among secun-
diparous women.

A significant direct correlation was found between breast-
feeding and the uterine volume ($p = 0.04$), regardless of time,
although the number of puerperal women who reported
exclusive breastfeeding (80) was much higher than the num-
ber of women who reported other breastfeeding practices
(11), which prevented a meaningful statistical analysis. Ne-
gishi et al16 analyzed non-exclusive breastfeeding. They did
not find significant differences in the size of the uterus one
month after vaginal birth among women with breastfeeding
rates of 80% per day (infants required complementary feeding
with non-breast milk sources until 20% of daily energy expen-
diture) and in women with breastfeeding rates of 20% per day.
However, the longitudinal and anteroposterior diameters
3 months after delivery in women with breastfeeding rates
of 80% were lower than those in women with breastfeeding
rates of 20%. Rodeck and Newton,8 Defoort et al,7 Buisson et
al,19 Wachsb erg et al,10 Mulic-Lutvica et al,5 Sokol et al11 and
Wataganara et al14 considered the uterine volume to be
independent of breastfeeding.

The major difficulty in conducting this study was the
limited number of measurements made on D7. Long
distances between the homes of some women and the place
where the examinations were performed, as well as the
demands of childcare, were the main causes of the non-
attendance on the last day of examinations.

Although there is no consensus in the literature regarding
the influence of factors such as parity, breastfeeding and birth
weight on the process of uterine involution, knowledge of the
normal ultrasound changes of the uterus during the postpar-
tum period is a requisite for the ultrasound diagnosis of
pathological conditions. Ultrasound is a low-cost and painless
diagnostic tool that is easily accessible to the population. It
may provide a best quality of health assistance for women if it
is available to clarify many puerperal abnormalities.18 Ideally,
each obstetrics service would have its own reference curve
with values corresponding to its own patients. Medical care for
pregnant women does not end with parturition, as care during
the puerperium represents a good indicator of the life and
health quality of a population.

References
1. Beazley JM, Underhill RA. Fallacy of the fundal height. BMJ 1970;4
(5732):404–406
2. Donald I, MacVicar J, Brown TG. Investigation of abdominal
masses by pulsed ultrasound. Lancet 1958;1(7032):1188–1195
3. Almeida CM. Curva da involução uterina no puerpério normal por
ultrassonografia [dissertação]. Campinas: Universidade Estadual
de Campinas; 2002
evaluation of uterine volume variations]. Rev Bras Ginecol Obstet
5. Mulic-Lutvica A, Bekuretsion M, Bakos O, Axelson O. Ultrasonic
evaluation of the uterus and uterine cavity after normal, vaginal
6. Rodeck CH, Newton JR. Study of the uterine cavity by ultrasound
795–801
1978;8(02):95–97
8. Al-Bdour ANA, Akasheh HF, Al-Husban NA. Ultrasonography of
the uterus after normal vaginal delivery. Saud Med J 2004;
25(01):41–44
9. Lee CY, Madrazo B, Drukker BH. Ultrasonic evaluation of the
postpartum uterus in the management of postpartum bleeding.
10. Wachsb erg RH, Kurtz AB, Levine CD, Solomon P, Wapner RJ. Real-
time ultrasonographic analysis of the normal postpartum uterus:
technique, variability, and measurements. J Ultrasound Med
1994;13(03):215–221
11. Sokol ER, Casele H, Haney EI. Ultrasound examination of the
postpartum uterus: what is normal? J Matern Fetal Neonatal
12. Edwards A, Ellwood DA. Ultrasonic evaluation of the
postpartum uterus. Ultrasound Obstet Gynecol 2000;16(07):
640–643
study of the uterine body and cavity with three-dimensional
ultrasonography in the puerperium. Acta Obstet Gynecol Scand
2012;91(10):1184–1190
14. Wataganara T, Phithakwatchara N, Komoltri C, Tantisirin P, Poo-
liam J, Titapant V. Functional three-dimensional sonographic
18 Bae HS, Ahn KH, Oh MJ, Kim HJ, Hong SC. Postpartum uterine involution: sonographic changes in the endometrium between 2 and 6 weeks postpartum related to delivery mode and gestational age at delivery. Ultrasound Obstet Gynecol 2012;39(06):727–728