Coagulation abnormalities in acute promyelocytic leukemia
Alterações da coagulação associadas à leucemia promielocítica aguda

Rafael H. Jacomo
Eduardo M. Rego

Acute promyelocytic leukemia is frequently accompanied by coagulation abnormalities usually described as laboratorial disseminated intravascular coagulation, which is the main cause of morbidity and early mortality. Aberrant activation of the coagulation cascade and hyperfibrinolysis play an important role in the pathogenesis of bleeding diathesis, but their contribution varies from case to case. Here we review the main laboratorial findings and the recommended clinical management of coagulopathy associated with acute promyelocytic leukemia. Rev. Bras. Hematol. Hemoter. 2009; 31(Supl. 2):48-50.

Key words: Acute promyelocytic leukemia; coagulation; fibrinolysis; disseminated intravascular coagulation.

Introduction

Acute promyelocytic leukemia (APL) is invariably associated with recurrent chromosomal abnormalities involving the receptor of retinoic acid (RAR). In about 98% of the cases the companion gene involved is the promyelocytic leukemia gene (PML), resulting in the PML-RARα fusion gene and a chimeric protein with reduced sensitivity to retinoic acid. Nevertheless, pharmacological doses of all-trans retinoic (ATRA) can disrupt this resistance and lead to differentiation of leukemic blasts.1-7 Consequently, protocols which associate ATRA and standard chemotherapy have become the standard in this disease and remission rates of almost 90% have been achieved.8,9

Clinically, a major aspect of APL is the presence of coagulation abnormalities and about sixty percent of patients present at least minor bleeding at diagnosis.10,11 Before the availability of ATRA, from 10 to 30 percent of patients died early during treatment.11-13 Despite the high cure rates reported, the coagulopathy is still the main factor responsible for morbidity in this disease14 and the cause of early mortality.9

Laboratorial Hemostasis in APL

Most APL patients present at diagnosis with prolonged prothrombin time, partial thromboplastin time and thrombin time, hypofibrinogenemia, high D-Dimers and low platelet counts.15-18 The thrombin-antithrombin complex (TAT) and fibrinopeptide A are elevated, which represent intravascular thrombin formation and activation of the coagulation cascade in vivo suggesting that a mechanism similar to disseminated intravascular coagulation (DIC) may be present.

Currently, there is evidence that APL blasts express tissue factor (TF) and secrete interleukin 1, inducing activation of the coagulation cascade.19-21 Also, an alternative procoagulant, namely Cancer Procoagulant, which activates Factor X directly, is present in APL cells.22 Despite this, some peculiarities are found in APL coagulopathy: the platelet half-life is normal,23 and protein C and antithrombin plasmatic concentrations are normal,20,24 different from classical DIC.25 Moreover, clinical bleeding is disproportional to laboratorial data suggesting that different mechanisms may be involved.

Hematology Division, Department of Internal Medicine and Center for Cell Therapy, Medical School of Ribeirão Preto, University of São Paulo,

Correspondence: Eduardo Magalhães Rego
Laboratório de Hematologia, Hospital das Clínicas da Faculdade de Medicina de Ribeirão Preto, Universidade de São Paulo.
Av. Bandeirantes, 3.900 - Campus USP
14048-900 – Ribeirão Preto-SP – Brasil
Tel.: (55 16) 3602-2888 – Fax.: (55 16) 3633-6695
E-mail: emrego@hcrp.fmrp.usp.br
The detection of low levels of α2-antiplasmin, a
antifibrinolytic agent, implies that an hyperfibrinolytic state
may be present. Plasminogen activation inhibitor-1 (PAI-1)
and lower levels of fibrinogen compared to DIC highlight
fibrin lysis as an important mechanism in APL. Moreover,
thrombin activated fibrinolysis inhibitor is quantitatively
normal, while classically in DIC, there is consumption of this
factor. Additionally, the promyelocytic leukemia cell line
(NB4) can increase plasmin formation by 21 times in vitro. Another interesting point is the over-expression of annexin
II in APL cells. Annexin II binds to tPA and plasminogen
and improves plasmin activation by almost 200 times.

A third mechanism is involved in APL coagulopathy.
The activity of some proteolytic enzymes is above normal
and some of them can lyse fibrin. Elastase levels are raised, and there is evidence that it breaks down fibrin. As fibrin
degradation products have inhibitory effects on the
coagulation cascade (specially fragment D-like), this
proteolysis has an anticoagulation effect.

Therefore, APL coagulopathy is peculiar. Some
laboratorial data may suggest DIC, but the bleeding signs
are more intense than a hemostasis test could preview. There
is evidence that activation of fibrinolysis and some proteases
play an important role. Hence, the coagulation abnormalities
are due to at least three pathways which can explain why
bleeding is so significant in this disease.

ATRA effects on hemostasis

After the introduction of ATRA in the clinical practice,
an important improvement was observed in the evolution
of patients. Surprisingly, besides the expected effect on cell
cycle, a remarkable improvement in several coagulation tests
and reduction in bleeding diathesis were observed.

Patient management

A major concern when treating APL patients is the
necessity of prompt ATRA administration on suspicion. This
can partially revert the coagulopathy and improve outcomes.
Concomitantly, an interesting point is to avoid classical
chemotherapy regimens, which can lead to worsening of
bleeding. Despite a growing understanding of the
pathophysiology, no specific treatment has been proposed
for coagulation abnormalities. Transfusions should keep
platelet counts above 30-40 x 10^9/µL and there is no
consensus as to whether plasma and cryoprecipitate should
be used prophylactically. Leukocytapheresis must be avoided
due to worsening in coagulation diathesis. There is no
evidence that administration of antifibrinolytic drugs has any
beneficial effect.

Conclusion

APL is a standard for disease directed therapy. Survival
is near 90% in some trials, but bleeding remains a
major concern. Coagulation diathesis has multiple causes
and can be summarized in three points: coagulation
activation, fibrinolysis and proteolysis. An aggressive
treatment once APL is suspected is the key to reduce
morbidity and mortality.

Resumo

A leucemia promielocítica aguda (LPA) é geralmente acompanhada
por anormalidades da coagulação usualmente descritas como
coaagulação intravascular disseminada e que são a principal causa
de mortalidade precoce. A ativação anormal da cascata de co-a-
gulação e a hiperfibrinólise desempenham importante papel na
patogênese da diástese hemorrágica, mas a contribuição de cada
fator varia de caso a caso. Apresentamos aqui uma revisão dos
principais achados laboratoriais e da recomendação para o manejo

Palavras-chave: Leucemia promielocítica aguda; coagulação;
fibrinólise; coagulação intravascular disseminada.

References

1. Rowley JD, Golomb HM, Dougherty C. 15/17 translocation, a
consistent chromosomal change in acute promyelocytic leukaemia.
2. Larson RA, Kondo K, Vardiman JW, Butler AE, Golomb HM, Rowley
JD. Evidence for a 15;17 translocation in every patient with acute
SR, Murty VV, et al. Chromosomal translocation t(15;17) in
human acute promyelocytic leukemia fuses RAR alpha with a
663-74.
4. de Thé H, Lavau C, Marchio A, Chomienne C, Degos L, Dejean A.
The PML-RAR alpha fusion mRNA generated by the t(15;17)
translocation in acute promyelocytic leukemia encodes a
5. de Thé H, Chomienne C, Lanotte M, Degos L, Dejean A. The
t(15;17) translocation of acute promyelocytic leukemia fuses
the retinoic acid receptor alpha gene to a novel transcribed locus.
6. Melnick A, Licht JD. Deconstructing a disease: RARalpha, its fusion
partners, and their roles in the pathogenesis of acute promyelocytic
7. Rego EM, Pandolfi PP. Analysis of the molecular genetics of acute
promyelocytic leukaemia in mouse models. Semin Hematol.

