ABSTRACT

Introduction: The determination of the exercise intensity domains has important implications for the aerobic training prescription and elaboration of experimental designs. Objective: The aim of this study was to analyze the effects of aerobic fitness level on the amplitude of the exercise intensity domains during cycling. Methods: Twelve cyclists (CYC), eleven runners (RUN) and eight untrained subjects (NT) underwent the following protocols on different days: 1) progressive test to determine lactate threshold (LT), maximal aerobic power (VO$_{2\text{max}}$) and its corresponding intensity (IVO$_{2\text{max}}$); 2) three constant workload tests until exhaustion at 95, 100 and 110% IVO$_{2\text{max}}$ to determine critical power (CP); 3) constant workload tests until exhaustion to determine the highest intensity at which VO$_{2\text{max}}$ is reached (Isup). Results: The amplitude of the moderate domain was similar between CYC (52 ± 8%) and RUN (47 ± 4%) and significantly greater in CYC when compared with NT (41 ± 7%). The heavy domain was significantly smaller in CYC (17 ± 6%) when compared with RUN (27 ± 6%) and NT (27 ± 9%). In relation to severe domain, there were no significant differences among CYC (31 ± 7%), RUN (26 ± 5%) and NT (31 ± 7%). Conclusion: It can be concluded that the heavy domain is more sensitive to changes determined by the aerobic fitness level; there is a need hence to observe the training specificity, when high level of physiological adaptation is aimed.

Keywords: anaerobic threshold, oxygen consumption, aerobic exercise

INTRODUCTION

Three exercise intensity domains have been identified through the kinetics of the pulmonary oxygen consumption (VO$_2$) and the response of the blood lactate ([La]) concentration during exercises of constant load, namely: moderate, heavy and severe. The moderate domain corresponds to all the exercise intensities which can be performed without alteration of blood lactate concerning the rest values; that is, below the lactate threshold (LT). The heavy domain starts from the lowest intensity at which blood lactate increases and has as highest threshold the critical power (CP). The severe domain is characterized for the reach of the maximal oxygen consumption (VO$_{2\text{max}}$), being limited between the CP and the exercise intensity which allows minimal time to VO$_{2\text{max}}$ acquisition (i.e., Isup). The determination of the exercise intensity domains has important implications in the prescription of aerobic training and design of experimental outlines, since it makes better acute individualization of the physiological responses possible and possibly better correlation between the stress level and expected adaptation.

Aerobic training determines adaptations both in oxygen central supply and in the capacity of its use, being able to improve physiological indices related to aerobic performance such as the LT, the VO$_{2\text{max}}$ and its respective intensity (IVO$_{2\text{max}}$), as well as the economy of movement (EM). In sedentary or active individuals, the improvement in aerobic performance and physiological indices which predict this performance is evident after aerobic training performed at submaximal intensities. However, additional increase in submaximal aerobic training (greater volume) in highly-trained individuals does not seem to modify aerobic performance in its associated physiological variables (i.e., LT, VO$_{2\text{max}}$, EM). Moreover, many studies have verified that the lactate response to exercise (i.e., LT) presents higher sensitivity to aerobic training than the variables which may allow increase of Isup, such as the VO$_{2\text{max}}$ and kinetics of the oxygen consumption.

Thus, it is possible to hypothesize that long-term aerobic training (e.g., > 3-5 years), could more expressively modify the moderate domain, when compared with the remaining domains. However, few studies have assessed the exercise intensity domains and, to the present moment, as far as we are concerned, no study has assessed the amplitude of the exercise intensity domains in individuals with different levels of aerobic fitness during cycling.

Ideally, the analysis of the aerobic training effects on performance and the physiological indices should be carried out in a longitudinal manner. However, the duration of the training protocols hardly ever surpasses 20 weeks, being rare to find those which last more than one year. The few which last more than this period end up being characterized as case studies. Alternatively, well-controlled transversal comparisons can let us observe some possible alterations which occur after years of aerobic training. Within this context, the aim of this study was to analyze the effects of the level of aerobic fitness on the amplitude of the exercise intensity domains during cycling. Based on the principle of the training specificity, the analysis of endurance runners during cycling makes it possible to obtain s group with intermediate aerobic fitness among untrained individuals and well-trained cyclists.

MATERIAL AND METHODS

The samples of this study were composed of male individuals, namely: 12 cyclists (age: 25 ± 5 years; body weight: 67 ± 8 kg; height:
samples were analyzed on an electrochemical lactate analyzer (YSL Cosmed, Rome, Italy), collecting data at each breath. The blood respiratory variables were measured using a gas analyzer (K4b2, cycle ergometer of mechanical break (Monark, 828E, Sweden). The at the same time (± at two o’clock). The tests were performed on a each volunteer, the tests were performed in the same location and not to perform intense exercise in the last 48 hours. Concerning orientation to come for the tests barefoot, fed and hydrated, and individuals met at least two out of the three criteria for the VO2max: [\text{Intensities} (95, 100 and 110\% \text{IVO}_{2\text{max}})] until voluntary exhaustion on exercise intensity at which the VO2max occurred. The LT was considered as the highest intensity at which the VO2max was reached at the exhaustion moment (TAVO2\text{max}=t_{\text{lim}}). Therefore, the Isup was estimated using the equation 1, substituting the only t_{\text{lim}} in which the VO2\text{max} was reached as expression of t_{\text{lim}} function, it was possible to find. The VO2\text{max} was considered as being the lowest exercise intensity at which the VO2\text{max} occurred. The LT was considered as the intensity prior to the increase in lactate concentration above the baseline values. It was determined by two experienced and independent examiners. In case there was disagreement between the examiners, a third one was used as a decision. The VO2\text{max} was continuously measured throughout the protocol. The amplitudes of the domains (moderate ≤ LT; LT > heavy < CP; CP > severe ≤ Isup) were expressed as percentage of Isup (VO2\text{J}.

Statistical analysis

The data were expressed as mean ± SD. The normality of the variables determined in this study was analyzed by the Shapiro-Wilk test. The analysis of the effects of the aerobic fitness on the submaximal and maximal variables was performed by the analysis of variance one-way ANOVA, complemented by the Scheffé test. The analysis of the effects of the level of aerobic fitness on the amplitude of the exercise domains (%Isup) were performed by the Kruskal-Wallis non-parametric test. In all tests a significance level of \(p < 0.05\) was adopted.

RESULTS

The maximal values obtained during the incremental test of the CYC, RUN and NT groups are expressed in table 1. The VO2\text{max} of the CYC group was significantly higher than in the RUN and NT
The VO_{2max} of the RUN group was significantly lower than that for the CYC group (p < 0.05). There was no significant difference between the RUN and NT groups (p > 0.05). The [La] peak of the RUN group was significantly lower than for the CYC group (p < 0.05). There was no significant difference between the RUN and NT groups (p > 0.05). The [La] peak of the RUN group was significantly lower than in the RUN and NT groups (p < 0.05). There was no significant difference between the CYC and NT groups and RUN and NT groups (p > 0.05). The [La] peak of the RUN group was significantly lower than in the NT group (p < 0.05) (table 2).

Concerning the amplitude of the intensity domains (relative values – % Isup/VO_{2}), the domain moderate of the group CYC (51.7 ± 7.9%) was significantly higher compared with the NT (41.2 ± 6.8%) (p = 0.0044) and without significant differences concerning the RUN group (46.7 ± 4.2%). No significant difference has been found between NT and RUN. Regarding the heavy domain, the CYC presented significantly smaller amplitude (17.5 ± 3.5%) compared with the RUN (27.1 ± 5.6%) (p = 0.0021) and NT (27.5 ± 9.1%) (p = 0.0034). No significant difference was found between RUN and NT groups. The amplitude of the severe domain was similar between groups (CYC = 30.9 ± 6.5%; RUN = 26.2 ± 5.2%; and NT = 31.3 ± 7.3%) (p > 0.05) (figure 1).

Table 1. Mean ± SD values of the variables obtained in the progressive test of the cyclists (CYC), runners (RUN) and untrained (NT) groups.

<table>
<thead>
<tr>
<th>Variables</th>
<th>CYC (N = 12)</th>
<th>RUN (N = 11)</th>
<th>NT (N = 8)</th>
</tr>
</thead>
<tbody>
<tr>
<td>VO_{2max} (mlkg^{-1} min^{-1})</td>
<td>65 ± 7*</td>
<td>55 ± 6†</td>
<td>42 ± 4</td>
</tr>
<tr>
<td>IVO_{2max} (W)</td>
<td>348 ± 32*</td>
<td>257 ± 40</td>
<td>220 ± 43</td>
</tr>
<tr>
<td>HR_{max} (bpm)</td>
<td>187 ± 6</td>
<td>177 ± 14</td>
<td>187 ± 11</td>
</tr>
<tr>
<td>[La]peak (mM)</td>
<td>12 ± 2</td>
<td>9 ± 2-</td>
<td>10 ± 1</td>
</tr>
</tbody>
</table>

* p < 0.05 concerning groups RUN and NT. † p < 0.05 concerning group NT. • p < 0.05 concerning group CYC.

As far as we are concerned, this study was pioneering in determining and analyzing the effects of the level of aerobic fitness on the amplitude of the exercise intensity domains during cycling. The main finding of this study was that the intermediate levels of aerobic fitness (i.e., RUN) are already sufficient to increase the amplitude of the moderate domain during cycling. However, in order to occur decrease of amplitude of the heavy domain, high levels of aerobic fitness and specific training in cycling (i.e., CYC) seem to be necessary. Finally, the amplitude of the severe domain does not seem to be influenced by the different levels of aerobic fitness.

According to what is classically demonstrated, the CYC group presented higher values of VO_{2max} compared with the RUN and NT groups3,12. Moreover, the VO_{2max} of the RUN was significantly higher than of the NT. These data show that although there is transference of the running training effects to cycling (i.e., RUN > NT), very specific adaptations seem to be necessary for the improvement of VO_{2max} in cycling, when the aim is the highest increase as possible of this indice and/or when training is performed by highly-trained athletes (i.e. CYC > RUN). Similar conclusions may be obtained concerning the CP and Isup, which presented the same behavior as VO_{2max}. However, the lactate response to exercise (i.e., LT – VO_{2} and W) seems to present a different behavior from the other variables. Although the LT (VO_{2} and W) of the CYC had been higher than in the other groups, there was no significant difference between RUN and NT. Thus, for the aerobic indices which primarily depend on the peripheral adaptations (i.e., oxidative capacity)16, the training effects are more specific to the type of trained exercise, and there may not be transferences from one type to another. Regarding the VO_{2max} CP and Isup, there may be partial transference of the training effects between the exercise types (running to cycling), probably due to the central mechanisms (i.e., oxygen supply) which contribute to the improvement of these indices after training. Similar data were obtained after the longitudinal analysis of the training effects performed by sedentary individuals with duration of 10 weeks17.

The moderate exercise domain comprises all the exercise intensities which can be performed without alteration of the blood lactate concerning the rest values; that is to say, intensities which are performed until the LT1. As initially hypothesized, the CYC presented
higher amplitude of this domain compared with NT; however, there was no difference compared with the RUN (figure 1). Thus, when the amplitude of the domains is normalized regarding Isup (%IsupVO2), there seems to be a partial transference of the training effects from running to cycling.

However, for the heavy domain, the CYC group presented lower amplitude concerning the RUN and NT. The decrease of the heavy domain in the CYC suggests that aerobic training in the long run may improve more the LT than the CP. Caputo and Denadai18 verified in well-trained cyclists that the CP represents 75% of the difference between the LT and VO2\textsubscript{max}, while in sedentary subjects, Neder et al.10 verified a value of 67%. In the same way, Greco et al.19 found that the CP expressed in %VO2\textsubscript{max} was similar between cyclists and untrained subjects (91% versus 87%, respectively); despite the fact the lactate response (maximal lactate steady state – MLSS), had been significantly different (83% versus 77%, respectively). These data altogether show that, similarly to the VO2\textsubscript{max}, the CP may be less sensitive to the training effects than the lactate response (LT and MLSS). However, this adaptation seems to be dependent on long term specific aerobic training in cycling.

Finally, the severe domain, which comprises all the intensities which obtain the VO2\textsubscript{max} seems not to be influenced by the different levels of aerobic fitness. Although the majority of the intensities, and consequently, the shorter times of exercise kept in this domain (i.e., Isup = 2 to 3 min3) are predominately aerobic20, the anaerobic sources of energy also play an important role. This fact can explain, at least partly, the absence of influence of aerobic fitness on the amplitude of the severe domain found in this study.

CONCLUSION

Based on the data obtained in this study, it can be concluded that the lactate response (LT) presents adaptations more specific to the training than the remaining aerobic indices (CP and VO2\textsubscript{max}). Moreover, the exercise domain ‘heavy’ is reduced with the increase of aerobic fitness, suggesting hence that the LT is more sensitive to the aerobic training than the CP. However, these adaptations seem to be dependent on specific adaptations in cycling. Therefore, it is necessary that the specificity of the movement principle is respected when a high level of physiological adaptation is expected.

All authors have declared there is not any potential conflict of interests concerning this article.