ABSTRACT

The objective of this study consisted of describing, through a systematic review, the control strategies and the different adaptations promoted by bodyweight high-intensity interval training. After selecting articles in the Medline/PubMed, ScienceDirect, SPORTDiscus and Scielo databases, 288 studies were found. However, after applying the inclusion and exclusion criteria only two articles were considered eligible for the systematic review. Of these, the sample of the selected studies was made up of 48 individuals, 31 female and 17 male, ranging in age from 20.3 to 20.5 years. The stimulus time of the exercise protocols used was 20 and 30 seconds, and the recovery time was 10 seconds (passive) and 4 minutes (active), while the total session time ranged from 4 to 18 minutes. Intensity in both studies was “all out”, and the weekly frequency was 4 and 3 days, totaling 16 and 12 training sessions in each study. Only one study evaluated changes in body mass and no significant changes were found. In addition, discrepancies between parameters in aerobic fitness and muscle endurance were found between studies. Bodyweight HIIT (High-Intensity Interval Training) protocols use different external load parameters, but the stimulus and recovery times are common variables for the organization of training sessions, with different duration and weekly frequency between sessions, which may have influenced the different adaptations to the parameters of physical fitness between the studies. Level of Evidence I; Prognostic studies - Investigating the effect of patient characteristics on disease outcome.

Keywords: Calisthenics; Physical exercise; High-intensity interval training.

RESUMEN

El objetivo de este estudio fue describir a través de una revisión sistemática las estrategias de control de carga y las diferentes adaptaciones promovidas por la práctica del entrenamiento intervalado de alta intensidad con peso corporal. Después de la selección de artículos en las bases de datos Medline/PubMed, ScienceDirect, SPORTDiscus y Scielo, se encontraron 288 estudios, sin embargo, después de aplicar los criterios de inclusión y exclusión fueron elegibles sólo dos artículos para la revisión sistemática. De éstos, la muestra de los estudios seleccionados era de 48 individuos, 31 del sexo femenino y 17 del sexo masculino con variación de edad entre 20,3 a 20,5 años. El tiempo de estímulo de los protocolos de ejercicio utilizados era de 20 y 30 segundos y el tiempo de recuperación de 10 segundos (pasivo) y 4 minutos (activo), el tiempo total de la sesión varió de 4 a 18 minutos, la intensidad en ambos los estudios era “all out” e a frecuencia semanal era de cuatro a tres días totalizando 16 y 12 sesiones de entrenamiento en cada estudio. Apenas un estudio evaluó las alteraciones en masa corporal, siendo que no fueron encontradas alteraciones significativas. Además, fueron encontradas diferentes adaptaciones a los parámetros de aptitud física entre los estudios. Nivel de Evidencia I; Estudios prognósticos – Investigación del efecto de las características de un paciente sobre el desenlace de la enfermedad.

Descritores: Calistenia; Ejercicio físico; Entrenamiento intervalado de alta intensidad.
INTRODUCTION

The performance of exercises based on body weight is recognized as a historically used strategy. However, nowadays, the modality has been gaining notoriety due to operational facility for its practice.

Additionally of this trend, the high intensity interval training (HIIT) has been considered as an efficient strategy in the improvement of the physical fitness, body fat reduction and improvement in clinical indicators when it is compared with the moderate intensity training, although there is no significant differences found in other studies between HIIT and continuous and moderate intensity training.

Nevertheless, although the efficiency of HIIT’s programs is considered a consensus in literature, the accessibility, the influence of this programs in lifestyle, the long-term repercussions and the enforcement security remains in discussion. In this perspective, studies that mix both approaches (HIIT and body weight) can be considered an important strategy in the improvement of the physical fitness parameters.

Thus, the objective of this study was to describe through a systematic review the strategies of external and internal load control during the training sessions and the different adaptations promoted in physical fitness parameters by practice the of high intensity interval training with body weight.

MATERIALS AND METHODS

After approval of the ethics and research committee of Universidade São Judas Tadeu, the systematic review of literature was performed using electronic databases. The electronic search was conducted in the following databases: Medline/PubMed, Science Direct, SportDiscus e Scielo. The words “High-intense interval training, whole body e calisthenics exercise” were selected as descriptors. At first, the used term was “High-intense interval training”, because it is a term that is equally used in DeCs and MeSh Terms. The term “whole body” is different in DeCs and in Entry Terms of the PubMed. The search was performed between November 5th and December 5th, 2016.

The selected articles should fill out the followin criteria: key word in the title and in the abstract, intervention protocol using only body weight exercises combined with the HIIT’s strategy, intervention period of at least a week, articles written in English, Spanish and Portuguese and date of publication between January 2006 and November 2016. As exclusion criteria were used the following criteria: cross-sectional and animals studies, vibratory platform studies, articles review, dissertations and theses.

In the identification phase, 288 studies were selected with the “High-intense interval training” term, after “Whole body e calisthenics exercise” descriptors application, three studies were selected. After this selection, the selected articles were wholly obtained and posteriorly examined following the inclusion and exclusion criteria established. A cross-sectional study was withdrawn remaining only two studies, as illustrated in Figure 1.
RESULTS

The total number of participants in the selected studies was 48 individuals, being 31 women and 17 men, with mean age variations between 20.3 and 20.5 years old. The exercises burpee, jumping jack, mountain climber and squat were used in the studies.

As described in the Table 1, the stimulus time of the exercise protocols used was 20 and 30 seconds and a recovery time of 10 seconds (passive) and 4 minutes (active), the session total time varied between 4 and 18 minutes, the intensity in both study was all out and the weekly frequency was 4 and 3 days, totaling 16 and 12 training sessions in each study.

Whereas the physical fitness parameters, only McRae et al. study evaluated the exercises program effects on body mass; in that parameters, 16 training sessions was insufficient to promote significant changes. In relation of neuromotors and metabolic variants, only McRae et al. study found significative changes as described in Table 2. Furthermore, the same study found significant changes in pleasure perception after HIIT session.

However, although the Gist et al.5 study did not find significant changes in aerobic fitness, differences were found in the lactate peak and in the enforcement perception.

DISCUSSION

The objective of this study was describe, through a systematic review, the control strategies of external and internal load during the training sessions and the different adaptations promoted in physical fitness parameters by the practice of high intensity interval training with body weight.

Even if there are only two studies, the main finds of these studies were the similarity of external load controls used in training protocols as stimulus time, recovery time, total time of training session and intervention period and the results discrepancy about adaptations of variables of physical fitness parameters.

From the perspective of physical training, it’s known that the training volume is considered an important parameter in adaptive responses,16-19 in the study of McRae et al.16 was not noticed significant changes in aerobic capacity parameters between Endurance and Tabata groups. A possible alternative for this fact could be associated with the proposed volume in the intervention group training session that is lower than Endurance group volume. However, four minutes in high intensity physical activity were enough to promote favorable adaptations in aerobic power and in neuromuscular function compared with the control group.

Table 1. Methodological characteristics.

<table>
<thead>
<tr>
<th>Author and year</th>
<th>Effort</th>
<th>Recovery</th>
<th>Total</th>
<th>Intensity</th>
<th>Frequency</th>
<th>Total</th>
<th>Intervention</th>
</tr>
</thead>
<tbody>
<tr>
<td>McRae et al. 2012</td>
<td>20 sec</td>
<td>10 sec</td>
<td>4 min</td>
<td>all out</td>
<td>4 days</td>
<td>16</td>
<td>28</td>
</tr>
<tr>
<td>Gist et al. 2015</td>
<td>30 sec</td>
<td>4 min</td>
<td>18 min</td>
<td>all out</td>
<td>3 days</td>
<td>12</td>
<td>28</td>
</tr>
</tbody>
</table>

Table 2. Essential characteristics of included studies.

<table>
<thead>
<tr>
<th>Author and year</th>
<th>Journal (IF)</th>
<th>Sample</th>
<th>Age (years)</th>
<th>Experimental design</th>
<th>Exercise selected</th>
<th>Results</th>
</tr>
</thead>
<tbody>
<tr>
<td>McRae et al. 2012</td>
<td>Appl. Physiol. Nutr. Metab(IF: 1,91)</td>
<td>22 (female)</td>
<td>20.3 ± 1.4</td>
<td>Protocol - 8 sets with 20 seconds of a single exercise (burpees, jumping jack, mountain climbers, or squat thrusts) separated by 10 s of rest per session performed 4 times a week. Endurance protocol - 30 minutes of racing with intensity corresponding to 85% of maximal heart rate obtained in the maximum VO2 test. Protocols control - maintenance of physical activities that practice regularly</td>
<td>Burpee, Jumping Jack, Mountain Climber and Squat trust</td>
<td>Significant increment on VO2max and maximal repetitions compared to control group, however, without statistical significance compared to endurance group.</td>
</tr>
<tr>
<td>Gist et al. 2015</td>
<td>Military Medicine (IF: 1,11)</td>
<td>26 (17 male - 9 female)</td>
<td>20.5 ± 1.7</td>
<td>Protocol - 4 to 7 sets with 30 seconds of all out exercise with 4 minutes of active recovery being performed 3 times a week. Fitness Protocol - Army Physical Test (APFT) - 2 minutes pulled on the bar, 2 minutes abdominal rower and 3200 meters running being performed 3 times a week.</td>
<td>Burpee</td>
<td>Increment (not statistically) on aerobic and anaerobic capacity in both groups. Statistical differences on muscular parameters between the groups at the pre- and post-intervention.</td>
</tr>
</tbody>
</table>

Another important parameter in physical training sessions is the session duration.18,20,22 The results found in this review agree with previous studies reported in literature19-21 which has the total during about HIIT training session between 4 and 32 minutes. Furthermore, it is already well established that this duration is enough to promote biometrics adaptations and increase physical fitness5,17-19 as reported in studies of this review.

Between adaptive mechanisms from the training process, it is known that training load takes great responsibility.23 The training load is conceptually composed by the stimulus that compose the training session, further this parameters is considered an important variable in physical exercise control and can be monitored internally and externally.23,24 The internal training load correspond to acute physiological responses provided by exercises.22 The greater the internal load of the training, the greater the adaptation on the training,25 which has as the main variables: heart rate during the exercise, heart rate immediately after the exercise, lactato concentration measured immediately after the exercise, maximum VO2 during exercise and subjective perception of effort.22,28

In HIIT training, the main internal load parameters quoted by literature22,28 corresponds to effort perception, heart rate and maximum VO2. In the review, only the studies of Gist et al.5 e McRae et al.16 used effort perception as intensity monitoring parameter during training session, even though it had all out load propose.

Additionally, the ratio of recovery time about effort time and also the total during of training session has been quite used.21,26 The selected studies in this review used the ratio of 1:1/24 and 1:8.25 Such intervals are in line with previous studies.15,19,20

In Gist et al study,5 significant differences in aerobic capacity between experimental and control groups were not found, however the sample consisted of active military individuals which may have influenced the experiment result because of participants training level. The trainability is a component that influences the training adaptations,23,24 therefore it must be considered independent of experimental desing of studies.22 Beyond that the discrepancy between the results in the variables of physical fitness established between both studies can be attributed to difference between the external load parameters used between the studies, especially in the number of weekly sessions and the duration of the recovery interval.

Limitations must be consider in this study, being them the number of studies available in literature as well as the organization of experimental protocols used. These informations do not make possible any conclusion about adaptive mechanisms in anthropometrics parameters. Furthermore even with great researches numbers about HIIT physiological impact, there are still gaps in knowledge about practical enforcement of HIIT with body weight, either in cost effectiveness relation for physical fitness programs, as suggested by Gray,11 or in variables manipulation of exercise session as load control, session during, weekly frequency and exercise selection.
CONCLUSION

The protocols of HIIT with body weight use many different external load parameters, the stimulus and recovery time for each cycle are common variables for the training sessions organization, however, with different duration and weekly frequency between sessions, which could have influenced in different adaptations in physical fitness parameters between the studies.

AUTHORS’ CONTRIBUTIONS: Each author made significant individual contributions to this manuscript. JPP (0000-0003-4763-9410)*, BM (0000-0001-6293-5571)* and ACA (0000-0002-2527-2163)* were the main contributors to the writing of the manuscript. JPP (0000-0003-4763-9410)*, BM (0000-0001-6293-5571)* and ACA (0000-0002-2527-2163)* were the main contributors to the writing of the manuscript. JPP (0000-0003-4763-9410)*, BM (0000-0001-6293-5571)* and ACA (0000-0002-2527-2163)* were the main contributors to the writing of the manuscript. JPP (0000-0003-4763-9410)*, BM (0000-0001-6293-5571)* and ACA (0000-0002-2527-2163)* were the main contributors to the writing of the manuscript. JPP (0000-0003-4763-9410)*, BM (0000-0001-6293-5571)* and ACA (0000-0002-2527-2163)* were the main contributors to the writing of the manuscript.

REFERENCES


ACKNOWLEDGMENT

The authors thank CAPES (Personnel Development Coordination Higher Education) for financial support for Machado AF and RICA RL. The support is not exercised by the publication decision, as well as in the preparation of the article.

All authors declare no potential conflict of interest related to this article.