Introdução: A prática de atividade física tornou-se menos frequente a partir dos anos 80, mesmo entre crianças mais ativas. Objetivo: Analisar o consumo excessivo de oxigênio pós-exercício (EPOC) e gasto energético total (TEE) em crianças durante e após atividades distintas. Métodos: Dezessete crianças saudáveis (9,6 ± 0,1 anos) foram submetidas aleatoriamente a seguintes procedimentos com duração de 30 minutos em dias diferentes: (a) brincadeiras tradicionais (PLAY), (b) videogame ativo (Dance Dance Revolution, DDR) e (c) assistir à televisão (TV). O consumo de oxigênio (VO2) foi medido em repouso, no 10º, 20º e 30º minuto de intervenção e 40 minutos depois da intervenção. O TEE também foi calculado. Resultados: No final da intervenção, o VO2 aumentou 330% e 166% para PLAY e DDR, respectivamente, comparado ao repouso. Após a intervenção, o TEE foi maior no DDR e TV (112,08 ± 19,45 vs. 56,98 ± 6,34 vs. 36,39 ± 4,5 kcal, p < 0,01), respectivamente. Conclusão: O PLAY induziu crianças a alcançar um VO2 durante a atividade e maior EPOC e TEE comparado ao DDR e TV. Nível de evidência A1b; Estudo crossover.
INTRODUCTION

Physical activity has become less frequent since the 1980s, even among more active children. Nowadays, many kids around the world spend numerous hours a day watching TV or playing sedentary videogames, contributing to an increased risk of cardiovascular disease. Physical activity is considered essential to children's health. Therefore, activities involving traditional children's games and active videogames have been suggested to satisfy and improve physical activity levels. Moreover, recent studies have indicated that active videogames can increase energy expenditure (EE) among schoolchildren and have been associated with improvement in health-related markers. Active games elevate EE, have the potential to increase physical activity, and have a positive influence on energy balance.

Measurements of oxygen consumption \((VO_2) \) are used for energy conversion. Excess post-exercise oxygen consumption (EPOC) is a physiological parameter used to analyze body metabolism and energy expenditure after physical activity. A higher EPOC contributes to a higher EE beyond the promoted during the activity, which helps to control body weight. In adult studies, EPOC has been observed for as long as 30 minutes to 12 hours.

Energy imbalance, even with just the consumption of a very few kcal higher than actual expenditure (i.e., 25 kcal/day), may lead to obesity over time. Christiansen et al. developed a mathematical model to evaluate changes in body mass and values of energy intake and EE, controlling for physical activity. The application of the model showed that an increase in body mass of 1 kg/year corresponded to an imbalance of 16.9 kcal/day for men, and 82% of this amount was stored in the body, while 18% was used for energy conversion.

EPOC means that extra energy has been used beyond the utilized during physical activity. The extra EE after exercise is important for individuals who want to reduce body weight. Exercise mode, duration, and intensity may impact the duration and magnitude of EPOC in adults, but little is known about the effect in children. Therefore, the aim of the present study was to compare \(VO_2 \) and EE during and after interventions such as traditional play, active videogames, and watching television. We hypothesized that active play would elicit the highest \(VO_2 \) and EPOC, and thus EE, during and after the activity.

MATERIAL AND METHODS

A random sample of sixteen schoolchildren aged 9-10 years (8 boys and 8 girls) participated in the study. The main characteristics of the participants are presented in Table 1. After authorization from the school, the children's parents received an informed consent letter describing all procedures of the study and signed the consent for the children's participation.

The exclusion criteria were: (a) physical impairments that could prevent the participant from performing the activities; (b) existence of any previous cardiometabolic disease (e.g., diabetes or hypertension); and (c) any previous experience with the video game “Dance Dance Revolution” before participating in the study. The selected songs were from a basic low-level difficulty list.

Procedures

All procedures were performed at a multi-sports gym and at the Laboratory of Studies in Physical Education and Health at the Catholic University of Brasilia, Brazil. The participants were instructed to come to the laboratory fasted, while maintaining their regular eating habits the day before, to analyze resting \(VO_2 \) (measured after a 10-minute seated period). After this measurement, the participant received a standard snack prescribed by a nutritionist (orange juice (200 ml, 100 kcal, 28 g of carbohydrate) and a pack of crackers (92 kcal, 17 g of carbohydrate, 2.9 g of protein, and 5 g of total fat)).

The participants attended four visits on different days, 24 hours apart from each other. The first visit consisted of anthropometric evaluation and familiarization. The following visits, described below, were performed in a randomized order, on different days, between 8 and 11 AM. Each visit lasted 80 minutes and included 10 minutes of rest, 30 minutes of activity, and 40 minutes of recovery.

Familiarization with the Intervention and Anthropometric Evaluation

The participants received orientations and were familiarized with the procedures and equipment that would be used during the experimental sessions. Each child learned how to play the DDR video game 15 times, during 30 minutes, supervised by a research team member.

Body mass (Electronic Scale Tech 05®, China), height (Portable Stadiometer, Sanny®, Brazil), and subscapular and triceps skinfolds (Large Skinfold Caliper, USA) were evaluated. Body fat was estimated according to Slaughter et al.

Traditional Children's Games Session (PLAY): In this session, each child was evaluated individually on different days. PLAY was performed with other kids (n=7) to motivate the child and make the session as close to real as possible. This activity consisted of three traditional running games usually played by many kids around the world, as follows: 10 minutes of “Tag! You’re it!”, 10 minutes of “dodge ball”, and 10 minutes of “capture the flag”. Heart rate (HR) (Polar Electro Oy, Finland) and \(VO_2 \) (Cortex Metamax 3B – Biophysik, Germany) were measured immediately after each game.

Dance Dance Revolution Session (DDR): Participants played an interactive videogame (DDR – Pump it up for Playstation® installed on a laptop computer (LG S460 14, SP – Brazil). They were not familiar with DDR before participating in the study. The selected songs were from a basic low-level difficulty list.

Watching Television Session (TV): Participants watched two popular cartoons (“Sponge Bob” and “Ben 10”) during 30 minutes (15 minutes per cartoon) while seated in a quiet room. The cartoons were also shown on a laptop computer (LG S460 14, SP – Brazil).

Oxygen Uptake and Heart Rate Measurement: Oxygen uptake \((VO_2) \) was measured through expired gas by using a portable analyzer (Cortes MetaMax 3B - Biophysik, Germany) with a pediatric mask attached to the participant. Figure 1 displays the timing of each measurement. EE was calculated assuming that each litre of \(VO_2 \) represented an expenditure of 5 kcal or 20.92 kJ. HR was measured using a monitor (Polar Electro Oy, Finland), and HR maximum (HRmax) was estimated with the equation HRmax = 208 – (0.7 x age).

Statistical Procedures

Data were expressed as mean ± standard error of mean. To determine the effect of the different sessions (PLAY, DDR, and TV), a one-factor analysis of variance (ANOVA) was performed. EE of each session was compared using one-way ANOVA. Main effects were evaluated with Bonferroni's post hoc comparisons. A post hoc analysis on the effects found was performed to identify the adequacy of the sample. The level of statistical significance used was p<0.05. All statistics were performed using SPSS 22.0 (IBM, Inc., Chicago, IL).
RESULTS

The coefficient of variation of the main characteristics of the sample showed little dispersion with values from 5.2% to 21.8% (Table 1), characterizing the sample as homogeneous. The mean values for body mass, height, body mass index (BMI), and body fat of the participants were close to the 50th percentile for their respective sex and age.19 The mean resting values for systolic blood pressure (101.0±2.5 mmHg) and diastolic blood pressure (65.9±1.4 mmHg) corresponded to the 50th and 60th percentile, respectively, according to the National High Blood Pressure Education Program (NHBPEP).20

Table 2 presents the cardiovascular responses during the activity sessions. The variables at rest were not different between sessions. However, during the sessions, HR, BP, and double product (DP) after DDR and PLAY differed significantly from rest. These variables were significantly higher during PLAY when compared to DDR and TV, and during DDR when compared to TV.

Table 3 presents the VO2 during all sessions. EPOC was observed until the 20th and 30th minute of recovery of DDR and PLAY, respectively.

Table 4 presents the kcal and kcal/min expended at rest, during sessions, during the post-intervention recovery period, and of the whole session. The kcal expended at rest was not different between sessions. EE was higher after PLAY and DDR when compared to TV during the session, recovery, and whole session. EE after PLAY was also significantly higher when compared to DDR at the same moments. EE during TV did not changed when compared to rest. Estimated EE by all expired gases during sessions revealed a higher total caloric expenditure after PLAY when compared to DDR and TV (112.2±2.5 kcal vs 56.7±1.6 kcal vs 36.3±1.8 kcal; p<0.05), respectively.

Figure 2 shows MET values at rest and during the sessions. MET was significantly higher during PLAY and DDR when compared to TV (~236% and ~45% higher, respectively). RER was not different at rest. However, during sessions, RER was significantly higher during PLAY when compared to DDR and TV and also during DDR when compared to TV (data not shown). During 20 minutes of post-intervention recovery, PLAY presented higher RER when compared to rest. On the other hand, RER increased only during 10 minutes after DDR. RER during PLAY and DDR decreased during the entire post-exercise recovery period.

Figure 1. Study Design Including Schedule of VO2 Measurements.

Table 1. Physical Characteristics of the Participants (n=16).

<table>
<thead>
<tr>
<th>Variables</th>
<th>Mean ± SEM</th>
<th>Cv (%)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Age (years)</td>
<td>9.6 ± 0.1</td>
<td>5.21</td>
</tr>
<tr>
<td>Height (cm)</td>
<td>133.8 ± 2.3</td>
<td>7.40</td>
</tr>
<tr>
<td>Weight (kg)</td>
<td>32.4 ± 0.09</td>
<td>12.35</td>
</tr>
<tr>
<td>BMI (kg/m²)</td>
<td>18.4 ± 0.9</td>
<td>21.84</td>
</tr>
<tr>
<td>Body fat (%)</td>
<td>17.4 ± 0.9</td>
<td>21.84</td>
</tr>
</tbody>
</table>

SEM = standard error of mean; Cv = coefficient of variation; BMI = body mass index.

Table 2. Mean (±SEM) of Cardiovascular Variables at Rest and During Sessions (n=16).

<table>
<thead>
<tr>
<th>Variables</th>
<th>TV</th>
<th>DDR</th>
<th>PLAY</th>
</tr>
</thead>
<tbody>
<tr>
<td>HR (bpm)</td>
<td>82.9±5.1</td>
<td>84.9±4.7</td>
<td>85.4±5.4</td>
</tr>
<tr>
<td>SBP (mmHg)</td>
<td>99.6±6.9</td>
<td>99.8±6.2</td>
<td>99.9±6.0</td>
</tr>
<tr>
<td>DBP (mmHg)</td>
<td>65.6±5.0</td>
<td>63.8±5.9</td>
<td>63.0±5.4</td>
</tr>
<tr>
<td>DP (mmHg/min)</td>
<td>8367.5±932.7</td>
<td>8418.5±799.7</td>
<td>8733.4±1045.0</td>
</tr>
</tbody>
</table>

SEM = Standard Error of the Mean; TV = watching TV; DDR = Dance Dance Revolution (active videogame); PLAY = traditional children’s games; †p<0.01 when compared to TV at the same moment; ‡p<0.01 when compared to DDR at the same moment; †p<0.01 when compared to rest at the same session.

Table 3. Mean (±SEM) Values of VO2 at Rest and During and After Sessions (n=16).

<table>
<thead>
<tr>
<th>Moment</th>
<th>TV (ml.kg⁻¹.min⁻¹)</th>
<th>DDR (ml.kg⁻¹.min⁻¹)</th>
<th>PLAY (ml.kg⁻¹.min⁻¹)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Rest</td>
<td>7.02±1.08</td>
<td>7.04±1.07</td>
<td>7.00±1.02</td>
</tr>
<tr>
<td>During</td>
<td>7.5±1.0</td>
<td>11.7±1.3</td>
<td>23.1±4.0†</td>
</tr>
<tr>
<td>Rec 10 min</td>
<td>7.23±1.24</td>
<td>8.61±1.26</td>
<td>10.83±0.94**</td>
</tr>
<tr>
<td>Rec 20 min</td>
<td>6.93±1.23</td>
<td>7.96±1.02</td>
<td>10.03±0.58†</td>
</tr>
<tr>
<td>Rec 30 min</td>
<td>6.97±1.50</td>
<td>7.3±1.06</td>
<td>9.8±0.77**</td>
</tr>
<tr>
<td>Rec 40 min</td>
<td>6.93±1.31</td>
<td>7.07±0.98</td>
<td>8.03±1.88</td>
</tr>
</tbody>
</table>

SEM = Standard Error of the Mean; TV = watching TV; DDR = Dance Dance Revolution (active videogame); PLAY = traditional children’s games; †p<0.01 when compared to TV at the same moment; ‡p<0.01 when compared to DDR at the same moment; †p<0.01 when compared to rest at the same session.
and during 30 minutes of recovery from PLAY. EPOC occurs when VO2 DDR; †p<0.01 when compared to rest.

Table 4. Mean (±SD) Values of Kcal Expended at Rest and During Activity and Recovery (n=16).

<table>
<thead>
<tr>
<th></th>
<th>TV</th>
<th>DDR</th>
<th>PLAY</th>
</tr>
</thead>
<tbody>
<tr>
<td>Rest (kcal/min)</td>
<td>1.14±0.17</td>
<td>1.14±0.17</td>
<td>1.13±0.16</td>
</tr>
<tr>
<td>Activity (kcal/min)</td>
<td>1.21±0.15</td>
<td>1.90±0.21†</td>
<td>3.73±0.65**</td>
</tr>
<tr>
<td>Rec (kcal/min)</td>
<td>1.13±0.21</td>
<td>1.25±0.17†</td>
<td>1.53±0.17**</td>
</tr>
<tr>
<td>Activity (kcal)</td>
<td>36.39±6.50</td>
<td>56.98±6.34†</td>
<td>112.08±19.45*</td>
</tr>
<tr>
<td>Rec (kcal)</td>
<td>45.48±8.59</td>
<td>50.18±7.02†</td>
<td>61.25±6.78**</td>
</tr>
<tr>
<td>Whole session (kcal)</td>
<td>81.87±13.1</td>
<td>107.16±13.36*</td>
<td>173.33±26.23**</td>
</tr>
</tbody>
</table>

SD = Standard Deviation; Rec = Recovery time; TV = watching TV; DDR = Dance Dance Revolution (active videogame); PLAY = traditional children’s games; *p<0.01 when compared to TV; †p<0.01 when compared to DDR; #p<0.05 when compared to rest.

Figure 2. Metabolic Equivalent (MET) During Sessions (n=16).

DISCUSSION

VO2 and EE were analyzed in children during and after performing both traditional games (PLAY), active videogames (DDR), and watching television (TV). The main findings were that PLAY elicited the highest VO2 and EE during and after exercise (EPOC), although no differences were observed at rest. Even though DDR also showed a significant increase in VO2 and EE during and after activity when compared to TV, traditional games proved to be superior in increasing VO2, EPOC, and EE.

EPOC occurred during the first 20 minutes of recovery from DDR and during 30 minutes of recovery from PLAY. EPOC occurs when VO2 after exercise is significantly higher than at rest. Elevated VO2 after exercise occurs because of the need for a higher metabolic rate to enable recovery from exercise. The higher metabolic rate is needed due to several reactions related to post-exercise recovery, including the replenishment of oxygen stores, ATP and phosphocreatine resynthesis, lactate clearance, and inflammatory processes associated with exercise-induced muscle damage.11,21

In the present study, VO2 elicited by PLAY was 134% higher than at rest, while in DDR VO2 was 109% higher. When comparing VO2 during the post-exercise recovery period, EPOC after PLAY and DDR was 35% and 10% higher than after TV, respectively. VO2 recovery after PLAY was 22% higher than after DDR. This represents about 16 and 5 kcal more for PLAY and DDR when compared to TV, respectively. Although this might seem like a very small difference in EE for a single day. Considering the cumulative effect of this EPOC level over many days, this could positively impact the struggle against obesity. Even such a little extra EE above rest (5-16 kcal/day) may represent 150-480 kcal per month, and 1,800-5,760 kcal/year. If not expended, this energy would result in 200-640 g of fat every year. Moreover, if the total amount of EE was considered (entire session plus post-exercise recovery), PLAY resulted in ~91 extra kcal expended when compared to TV. This extra EE represents about 33,300 kcal during an entire year. This would result in about 3.6 kg of fat, potending a greater risk of obesity and other co-morbid conditions.

Lanningham-Foster et al.22 analyzed the EE of 25 children in distinct activities: watching TV while seated, playing traditional/sedentary videogames, watching TV while walking on a treadmill, and playing the Wii Sports Boxing game. EE increased 148% during the treadmill session and 172% during the active videogame session when compared to their respective resting values. In the present study, PLAY and DDR resulted in an EE 330% and 166% higher than their respective resting values. This demonstrates that traditional games are better than video games or treadmill exercise for eliciting a higher EE. And, although active videogames may be a good alternative, traditional games are better and easily introduced into children’s routines at school and home.

Mellecker and McManus23 found a higher EE during active videogames when compared to a seated game (XaviX J-Mat Jackie’s Action Run vs. XaviX bowling – 10-pin bowling; 5.23±1.63 vs 1.31±0.33 kcal/min, respectively). In the present study, PLAY and DDR resulted in 3.73±0.65 and 1.90±0.21 kcal/min expenditure, respectively. The lower EE in our study may be due to the motor pattern required for each specific game. Moreover, the EE in PLAY was higher probably because running was pivotal, requiring greater involvement of muscle groups than DDR. Although DDR induced less EE than PLAY, it is an effective alternative, as it is cheaper than other active videogames. Furthermore, some children consider this type of game important to encourage more exercise.8

EE during active play and EPOC are important for controlling body weight and may be influenced by several factors, including exercise duration and intensity.24 In the present study, PLAY performed at higher intensity elicited a higher metabolic rate during exercise and afterwards, in EPOC. These findings were similar to those by Thornton and Potteiger;25 who found that more intense resistance exercise elicited a higher EPOC in adults.

For each of the sessions, the EE was 82, 107, and 173 kcal during TV, DDR, and PLAY, respectively. The World Health Organization26 recommends at least 60 minutes of daily physical activity for children to be healthy, which is approximately 12,000 steps per day according to Colley et al.27 Thus, according to these criteria (150 kcal/day), kids would need to participate in PLAY for 30-40 minutes or 80 minutes in DDR to meet the daily recommendations.

RER can provide information about substrate utilization. RER during PLAY remained close to 1.0 and was significantly higher than DDR and TV. During the post-exercise recovery period, RER remained higher until 20 minutes of PLAY and after 10 minutes of DDR. After those periods, RER decreased until 40 minutes of recovery for PLAY and DDR at which time data collection ceased.

The high value of RER during PLAY suggests a higher glycolytic activity when compared to rest and TV. During intense exercise, RER is close to 1.0, representing the predominant metabolism of carbohydrates. On the other hand, high intensity exercise can cause a lower post-exercise RER, reaching values close to 0.7, which means a higher rate of fat oxidation.28 The body’s ability to use fat as an energy source and improve energy balance and weight control is important for preventing obesity.29 Therefore, high-intensity exercise should be considered as an effective strategy.30

Limitations of present study include the small sample size that prevented performing comparisons between genders. However, the kinetics of VO2 is different between boys and girls. Also, EPOC and RER were analyzed only for 40 minutes, thus, it is not possible to determine the responses beyond this time point.
CONCLUSION

Traditional children’s games that are easy to perform and less expensive showed higher cardiovascular responses, VO_{2}, EPOC, and EE, when compared to active videogame and watching TV. Thus, traditional active games can be a joyful, effective, easily applied, and less expensive way of intervening in the prevention of obesity and associated diseases. Additionally, the beneficial active playing goes beyond elevated EE to prevent obesity, since it improves cognitive, psychological, affective, and social health. Moreover, an active videogame like DDR is a safe, fun, and valuable way to increase EE in children who spend considerable time in front of the TV and others sedentary activities.

ACKNOWLEDGEMENTS

The authors would like to thank the CNPq for the scholarships and the colleagues of Suliane Beatriz Rauber for assisting with data collection.

All authors declare no potential conflict of interest related to this article.

AUTHORS’ CONTRIBUTIONS: Each author contributed individually and significantly to the development of the manuscript. SBR (0000-0003-3091-8464) * JFVNM (0000-0002-7534-7700) * PSB (0000-0003-4176-1159) * CSGC, JFVNM and BM and DFB: bibliographic research, manuscript’s revision and submission. *ORCID (Open Researcher and Contributor ID).

REFERENCES