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Abstract 
The present study applies computational intelligence techniques in the development of a hybrid model composed of Arti-
ficial Neural Networks (ANNs) and Genetic Algorithms (GAs) (MLP-GA) to estimate and fill in the gaps in the monthly 
variables of evaporation, maximum temperature and relative humidity to six regions in the state of Rio de Janeiro (RJ), 
Brazil. The results were evaluated using statistical techniques and compared with results obtained by the Multiple Linear 
Regression (RLM), Multilayer Perceptron (MLP) and Radial Basis Function (RBF) models and also compared with the 
data recorded by the weather stations. The correlation coefficient (r) between the evaporation estimates generated by 
MLP-GA with the recorded data showed a high relationship, remaining between 0.82 to 0.97. The average percentage 
error (MPE) ranged from 6.01% to 9.67%, indicating a accuracy between 90% to 94%. For the maximum temperature 
generated by MLP-GA the correlation with the recorded data remained between 0.97 to 0.99. It also presented the MPE 
between 0.95% to 1.57%, maintaining the accuracy of the estimated data between 98% to 99%. The correlation coefficient 
(r) between the relative humidity estimates generated with the MLP-GA remained between 0.89 a 0.97, the MPE between 
1.15% to 1.89%, which guaranteed a rate higher than 98% of correctness in its estimates. Such results demonstrated gains 
in relation to the other applied models and allowed the accomplishment of the filling of most of the missing values.  

Keywords: fault filling, Artificial Neural Networks, Genetic Algorithms.  

Aplicação de um Modelo Computacional Híbrido para Estimar e Preencher 
Falhas em Séries Temporais Meteorológicas 

Resumo 
O presente estudo aplica técnicas de inteligência computacional no desenvolvimento de um modelo híbrido composto 
por Redes Neurais Artificiais (RNAs) e Algoritmos Genéticos (AGs) (MLP-GA) para estimar e preencher lacunas nas 
variáveis mensais de evaporação, temperatura máxima e umidade relativa em seis regiões do estado do Rio de Janeiro 
(RJ), Brasil. Os resultados foram avaliados por meio de técnicas estatísticas e comparados com os resultados obtidos 
pelos modelos de Regressão Linear Múltipla (RLM), Perceptron de Multicamadas (MLP) e Redes de Função de Base 
Radial (RBF), além de serem comparados com os dados registrados pelas estações meteorológicas. O coeficiente de 
correlação (r) entre as estimativas de evaporação geradas pelo MLP-GA com os dados registrados mostrou uma relação 
elevada, permanecendo entre 0,82 e 0,97. O erro percentual médio (MPE) variou de 6,01% a 9,67%, indicando uma 
precisão entre 90% e 94%. Para a temperatura máxima gerada pelo MLP-GA, a correlação com os dados registrados 
permaneceu entre 0,97 e 0,99. Apresentou também o MPE entre 0,95% e 1,57%, mantendo a precisão dos dados esti-
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mados entre 98% e 99%. O coeficiente de correlação (r) entre as estimativas de umidade relativa geradas pelo MLP-GA 
permaneceu entre 0,89 e 0,97, com MPE entre 1,15% e 1,89%, garantindo uma taxa superior a 98% de acerto em suas 
estimativas. Tais resultados demonstraram ganhos em relação aos outros modelos aplicados e permitiram o preen-
chimento da maioria dos valores ausentes.  

Palavras-chave: preenchimento de falhas, Redes Neurais Artificiais, Algoritmos Genéticos.  

1. Introduction 

Monitoring natural phenomena by observing meteo-
rological information helps to understand the climatic 
characteristics of a region (Pappas et al., 2014). These are 
extremely important for decision making in areas such as 
agriculture, energy, transport, ecology, safety and health 
(Brito et al., 2016; Coutinho et al., 2018). Therefore, con-
tinuous and reliable time series are necessary. However, 
problems such as imprecise functioning of monitoring 
equipment, extreme weather conditions, absence of obser-
vers, human errors and other factors make the availability 
of continuous series a rarity, with failures or lack of 
records one of the problems commonly occurring in 
meteorological data series (Tardivo and Berti, 2014; Wol-
desenbet et al., 2016; Dembélé et al., 2019; Vega-Garcia 
et al., 2019). 

Failures are a common problem, this situation can 
make research unfeasible, hinder the use of information 
and even make it impossible to understand the climate of a 
region, limiting the understanding of the spatial or tem-
poral variability of various meteorological and hydro-
logical processes (Wanderley et al., 2014). Thus, the 
solution to this problem is the reconstruction of time series 
by estimating and filling in the missing information (Tar-
divo and Berti, 2014; Anjomshoaa and Salmanzadeh, 
2018). 

Over the years, several methods have been used to 
estimate and fill in missing data, such as averages, spatial 
interpolation, inverse distance weighting, linear regres-
sion, logistic regression, multiple regression, kriging, 
remote sensing, among others (Teegavarapu and Chan-
dramouli, 2005; Pappas et al., 2014; Tardivo and Berti, 
2014). More details on these methodologies can be found 
in the studies of Wanderley et al. (2012), Samanta et al. 
(2012), Eccel et al. (2012), Clack (2016), Brito et al. 
(2016), Woldesenbet et al. (2016), Anjomshoaa and Sal-
manzadeh (2018), Brubacher et al. (2020); Giovanella 
et al. (2021) and in Liu et al. (2017). 

These methodologies are generally applied to esti-
mate and fill meteorological data, which may require 
information from other locations and often only consider 
the proximity between the locations, discarding the cli-
matic differences that may occur due to the relief and the 
altitude. Thus, the methodology can present low quality 
estimates. Another negative aspect is the difficulty of 
representing extreme situations with non-linear trends 
(Silva et al., 2018; Dembélé et al., 2019; Aieb et al., 2019; 
Ren et al., 2019). These factors have directly influenced 

the use of techniques of Artificial Intelligence that are 
characterized by the attempt to reproduce human knowl-
edge or natural biological processes, adapting to different 
situations and managing to extract characteristics and infer 
responses from a set of data. (Haykin, 2001; Russell and 
Norvig, 2013). 

There are several studies with this theme in the lit-
erature: Teegavarapu and Chandramouli (2005) applied 
the techniques of artificial neural networks (ANN) and the 
Krigagem model to estimate absent precipitation data 
from 20 pluviometric stations in the state of Kentucky in 
the United States of America; Coulibaly and Evora (2007) 
compared 6 types of ANNs to fill in missing records of 
daily precipitation and temperature from 15 Gatineau 
weather stations in northeastern Canada; Kim and 
Pachepsky (2010) applied ANN to reconstruct daily pre-
cipitation data from 39 meteorological stations in the Che-
sepeake Bay watershed in the USA; Yozgatligil et al. 
(2013) compared different techniques, including Multi-
layer Perceptron ANN (MLP) to fill in missing values for 
total monthly precipitation time series and average 
monthly temperature for stations belonging to 7 regions of 
Turkey; Ford and Quiring (2014) evaluated the perfor-
mance of ANNs, weighting for inverse distance, mean, 
kriging and spatial regression for daily filling of soil 
moisture in Oklahoma in the USA; Wanderley et al. 
(2014) applied an ANN to fill monthly rainfall data gaps in 
the state of Alagoas, Brazil; Canchala-Nastar et al. (2019) 
used ANN to fill in missing precipitation data from 45 sta-
tions located in southwest Colombia; Gunawardena et al. 
(2022) compare multivariate linear regression model and 
artificial neural networks to predict and fill gaps in meteo-
rological data in southeastern France; Brubacher et al. 
(2020) applied multiple linear regression and artificial 
neural networks to fill historical series of daily rainfall in 
Rio Grande do Sul; Aschauerand Marty (2021) compare 
the inverse distance weighted, elastic network regression 
and random forest for time series forecasting of depth of 
snow in Switzerland; Vega-Garcia et al. (2019) used a 
feed-forward ANN to estimate and populate precipitation 
data from 5 stations located in the Ebro river basin in 
Spain. 

However, even if models based on artificial intelli-
gence present satisfactory results, the definition of esti-
mating variables and the individual choice of hyperpara-
meters for each model require time and in-depth 
knowledge of the technologies applied. For this reason, 
the present study aims to apply a hybrid methodology 
composed by the ANN junction of Multilayer Perceptron 
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and Genetic Algorithms (MLP-GA) to create a model with 
autonomous training and adjustment characteristics, which 
can estimate and reconstruct meteorological data. In addi-
tion, to prove the efficiency of the proposed model, its 
results are compared statistically with those presented by 
MLP, Radial Basis Function (RBF) and Multiple Linear 
Regression (RLM) models. 

Section 2 describes the study areas, data sets, pre- 
processing, proposed model to estimate and fill gaps, the 
models used for comparison and the methods applied to 
evaluate the performance of each model. Section 3 pre-
sents the results obtained by the models for each region. 
Section 4 discusses and compares the results with others 
found in the literature and section 5 presents the conclu-
sion of the study. 

2. Material and Methods 

2.1. Data and study site 
The data used in this study were provided by the 

National Meteorological Institute of Brazil (INMET). The 

information is monthly averages of evaporation, max-
imum temperature and relative humidity, recorded during 
the period from 05/31/2002 to 12/31/2012, adding 128 
data for each variable of each season. 

This series of meteorological information belongs to 
six stations located in the municipalities of Campos dos 
Goytacazes (CG) (21.74° S; 41.33° W and 11.20 m), Cor-
deiro (CO) (22.02° S; 42.36° W and 505.92 m), Itaperuna 
(IT) (21.20° S; 41.90° W and 123.59 m), Rio de Janeiro 
(RJ) (22.89° S; 43.18° W and 11.10 m), Paty do Alferes 
(PA) (-22.35° S; -43.41° W and 507 m), and Resende (RE) 
(-22.45° S; -44.44° W and 439.89 m), located in Rio de 
Janeiro state, Brazil (Fig. 1). 

The Rio de Janeiro state is located in the south-
eastern region of Brazil and borders the states of Espírito 
Santo, Minas Gerais, São Paulo and the Atlantic Ocean 
(Brito et al., 2016). The state is characterized by the sec-
ond largest metropolis and for being the largest oil produ-
cer in the country. It has an approximate population of 
17,264,943 and its territorial extension is 43,750,423 km2 

(IBGE, 2020). It also presents a great climatic diversity 
due to the relief, altitude and its proximity to the Atlantic 

Figure 1 - Map of the state of Rio de Janeiro with the regions set used in the study. 
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Ocean, and for that reason it is possible to observe the pre-
dominance of tropical semi-humid, tropical altitude and 
topical climates (Bastos and Napoleão, 2011). 

Thus, the locations used in this study were deter-
mined in order to represent the climatic diversity found in 
the different regions of Rio de Janeiro state. 

2.2. Proposed model for filling gaps 
The fill proposal in the occurred failures in the six 

meteorological stations was to compare the results of a 
hybrid MLP-GA model with the different techniques com-
monly used and thus apply the model that presented the 
best result in filling each variable in its respective region. 
For this, the following methodology consisted of carrying 
out several steps, ranging from the preparation of informa-
tion to the evaluation of the results obtained by the meth-
ods (Fig. 2). 

In the identification failure and inconsistencies stage, 
it was possible to verify the percentage of missing values 
for each meteorological variable in each location 
(Table 1). 

After this stage, the missing data were removed from 
all stations as described in the methodology addressed in 
the study by Coutinho et al. (2018), which is based on the 
missing data of a variable for a given period in a given 
station. The main objective of this methodology is to cre-
ate a homogeneous training and model testing set, where 
data from the same period from other stations should be 

taken by creating a set with the same records. For exam-
ple, if station x in the set of stations did not have the eva-
poration record or the monthly average of the maximum 
temperature or relative humidity for the period of 30/04/ 
2008, the same must be removed from all other stations. 
This process guarantees a homogeneous data set, making 
all stations have the same record numbers, totaling about 
108 records for evaporation, 90 for maximum temperature 
and 64 for relative humidity. 

With the removal of the missing information, the 
data set was normalized, changing the values actual scale 
to an interval between zero and Eq. (1). Such transforma-
tion was intended to encode all attributes at similar inter-
vals, making all data have the same importance. This 
facilitates the adjustment of training algorithms and also 
the presentation of better results (Coutinho et al., 2016). 

xnorm
j =

xj − xmin

xmax − xmin ð1Þ

where xnorm
j : normalized variable; xj: variable in position j; 

xmin: minimum value observed between variables; xmax: ma-
ximum observed value between variables. 

To compare the values observed and estimated by 
the techniques, the information set for each variable was 
divided and submitted to the Multiple Linear Regression 
models, Multilayer Perceptron Networks (MLP), Radial 
Base Function Networks (RBF) and the Hybrid model 
composed by Genetic Algorithms and by ANN MLP 
(MLP-GA) in two parts: 75% to training/adjustment and 
25% to validation. 

The validation stage consisted of submitting the esti-
mator data set to the models to estimate each of the data 
for the variables of evaporation, maximum temperature or 
relative humidity. efficiency was assessed using statistical 
techniques applied to the results obtained. Once the mod-
el's ability to predict the submitted variable was con-
firmed, the set of data belonging to the stations determined 
as estimators removed in the screening process was used 
to fill in the real gaps. Thus, if the Rio de Janeiro station 
does not have the maximum temperature measurement for 
the period of 30/04/2006, but the other remaining stations Figure 2 - Model applied to fill in failures. 

Table 1 - Number of occurred failures in the period from 05/31/2002 to 
12/31/2012.  

Missing data (%) 

Stations Evaporation Maximum temperature Relative humidity 

CG 2.34 5.47 3.91 

CO 2.34 3.13 17.97 

IT 0.00 3.10 5.47 

RJ 2.34 5.47 5.47 

PA 0.78 5.47 8.59 

RE 7.81 13.28 21.09   
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have it, then these data are submitted to the models to esti-
mate the data that will be filled in the Rio de Janeiro sta-
tion. 

2.3. Filling methods 
2.3.1. Multiple linear regression 

Multiple linear regression is a technique that ana-
lyzes or relates a dependent variable to several indepen-
dent variables (Fonseca et al., 2012). The relationship 
between a dependent variable Y and other independent 
variables (X1, X2, X3) is formulated by the following linear 
model Eq. (2) (Sousa et al., 2007): 

Yi = αþ β1X1iþ β2X2iþ β3X3iþ εi ð2Þ

The resolution of this problem is linked to the estimation 
of the values of the parameters α, β1, β2, βk which can be 
performed by the method of least squares, which aims to 
determine values of α e β, minimizing the sum of the 
squared errors (more information about the application 
and resolution of this model can be found at Sousa et al., 
2007; Lyra et al., 2011; Coutinho et al., 2016; Coutinho 
et al., 2018; Brubacher et al., 2020; Dias and Soares, 
2021). 

2.3.2. Multilayer perceptrons (MLP) 

The MLP is a supervised neural network that 
belongs to the feed-foward class. Its structure is com-
pletely connected, consisting of an input layer, one or 
more hidden layers and an output layer (Haykin, 2001; 
Coulibaly and Evora, 2007; Russell and Norvig, 2013) 
(Fig. 3). The flexibility of application of the model and its 
ability to present favorable results make it widely applic-
able in the complex problems resolution such as pattern 
recognition, classification, forecasting, image processing 
and reconstruction of missing information (Shah and Gha-
zali, 2011; Anochi and Campos Velho, 2015). 

The operation of this model consists of extracting 
characteristics from a known data set, which occurs 
through the adjusting weights process (wi) by mapping 
and inputs data set (xi) and outputs (yi). This adjustment is 
performed by the Back-propagation algorithm or by its 
Quasi-Newton Back-propagation, Resilient Back-propa-
gation, Levenberg-Marquardt Back-propagation variations 
(more information about the application, training types 
and transfer functions can be found at Haykin 2001; Braga 
et al., 2012; Coutinho et al., 2016; Coutinho et al., 2018; 
Milidonis et al., 2021). 

2.3.3. Radial basis function networks (RBF) 

The RBF ANN is activated by the function of the 
distance between its input vectors, centers, intermediate or 
hidden layer. The method uses radial base functions and 
aims to group the input data into clusters and transform a 
set of non-linearly separable input patterns in a set of line-
arly separable outputs. The output layer has the function of 
classifying the patterns received from the previous layer 
through the linear combination of the functions outputs 
(Braga et al., 2012; Haykin (2001); Coutinho et al., 2016).  
Fig. 4 demonstrates the basic architecture of an RBF-type 
ANN. 

2.3.4. Configuration of the MLP-GA hybrid model 

Unlike the previous models, where ANN character-
istics such as number of entries, transfer functions, train-
ing methods, learning rates and others are defined 
manually, in the MLP-GA hybrid model, genetic algo-
rithms (GA) were used to define the characteristics auton-
omously, using its evolutionary aspect to arrive at the best 
combination. Fig. 5 demonstrates the use of GA in con-
junction with ANN MLP. 

Figure 3 - ANN MLP architecture applied to estimate the maximum 
temperature, relative humidity and evaporation data. 

Figure 4 - Basic structure of a RBF ANN. 
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In this model, GA was responsible for making seve-
ral combinations, evaluating the training and validation 
data set, transfer the first and second intermediate layers 
functions, training algorithm, learning rate and momentum 
rate at each moment. To determine these characteristics, 
each chromosome or individual in a population was enco-
ded in binary in a structure with 14 bits (Fig. 6). This 
representation allows the description of various features 
and has been adopted by other researchers pesquisadores 
(Ghareeb e Saadany, 2013; Haidar e Verma, 2016; Ventura 
et al., 2019). 

The initial 5 bits belonging to (a) are associated with 
the variables belonging to each of the stations that can be 
used to fill a fault. For example, if this model was being 
executed to fill a gap in the relative humidity variable 
belonging to the Campos dos Goytacazes station, then 
these five bits indicate whether or not to use the relative 
humidity data for the regions of Paty do Alferes, Cordeiro, 
Itaperuna, Resende and Rio de Janeiro. This is achieved 
through the binary configuration, in which each gene that 
has a value of 1 identifies that the data set belonging to a 
station x is active and should be used, and the value 0 
identifies that it is inactive and should be ignored. 

The part of the chromosome belonging to (b) and (c) 
identifies which function will be applied to the first and 
second intermediate layers. These bits allow the choice 
between the step activation functions (satlin) (1 1) Eq. (3), 
Linear (purelin) (0 0) Eq. (4), Hyperbolic Tangent (tansig) 
(0 1) Eq. (5) and Sigmoid (logsig) (1 0) Eq. (6): 

satlin uið Þ=
1 se ui ≥ 0
0 se ui < 0

(

ð3Þ

purelin uið Þ= ui ð4Þ

f uið Þ= tgh
ui

2

� �
=

1 − exp − uið Þ

1þ exp − uið Þ
ð5Þ

f uið Þ=
1

1þ exp − uið Þð Þ
ð6Þ

The space belonging to (d) has the responsibility to make 
the choice between the training types, being able to choose 
the Back-propagation-traingd (0 1) algorithm or its varia-
tions, Quasi-Newton Back-propagation - trainbfg (1 0), 
Resilient Back-propagation - RProp - trainrp (0 0), Leven-
berg-Marquardt Back-propagation - trainlm (1 1). 

The learning rate and momentum adopted are 
obtained through the bits of (e). The learning rate can ran-
ge from 0.01 to 0.86, and the momentum rate is obtained 
by multiplying over the learning rate values. Multipliers 
can vary between 0.8, 0.15, 0.12 and 0.10 depending on 
the bits choice (1 0), (0 0), (1 1) and (0 1). 

The last bit identified by (f) has the creating purpose 
of an aid factor (λ) to adjust the network, which increases 
the training data set by inserting a generic set obtained by 
averaging the data used in the training. 

Other important factors of this methodology, such 
as the configuration of the genetic algorithm, were fixed 
in 40 individuals, maximum generation numbers equal to 
60, use of elitism to propagate about 15 individuals with 
high evaluations to the next generation, random drawing 
of 5 individuals with evaluations low to propagate to the 
next generation, in order to avoid that genetic character-
istics contained only in an low fitness individual are lost, 
creating a population without diversity with similar indi-
viduals. 

In addition to these parameters, GA also used the 
tournament method with its size set at 5, both for choosing 
the first parent and for choosing the second parent, and a 
two-point crossover operator to generate new individuals. 

The GA objective function has been described by 
minimize the absolute global error. This function was 
developed based on the creation of an ANN with the para-
meters defined by an individual to be evaluated. After 
training this network, its suitability is assessed by estimat-
ing the validation data set. The minimization of the value 
originated by the sum of the differences between the esti-
mated and the expected values for the validation data set is 
the objective function. 

Figure 5 - The MLP-GA structure model. 

Figure 6 - Example of a chromosome adopted to configure the ANN. 
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2.4. Definition of model characteristics and stations 
selection used in data estimation 

One of the major problems in using data from other 
locations to estimate values and fill in the faults of a sta-
tion x is how to choose the estimator stations. There are 
several ways to define them, which may be by closer 
regions, statistical methods such as stepwise linear regres-
sion, correlation coefficient between your data, or others 
(Coutinho et. al, 2018). 

However, Serrano et al. (2010) points out that there 
is no general criterion for selecting the appropriate sta-
tions, and for this reason, possible combinations were tes-
ted and analyzed in this study, where it was decided to use 
for the MLR, MLP and RBF models three stations chosen 
in part by the proximity criteria of the regions with the 

season to be filled. This methodology was adopted in order 
to compare the manual choice without statistical support 
with the choices defined autonomously by the MLP-GA 
hybrid model. From Table 2 it is possible to check the 
input data and also the settings adopted by all models 
(MLR, MLP, RBF and MLP-GA). 

2.5. Performance evaluation 
To assess the models’ ability to estimate the vari-

ables: evaporation, maximum temperature and relative air 
humidity, statistical measures were used, such as Pearson's 
correlation coefficient (r) Eq. (7) which assesses the 
degree of association between the estimated and observed 
data, ranging between -1 and 1, with 1 being a perfect cor-
relation, the mean absolute error (MAE) Eq. (8) that evalu-

Table 2 - Characteristics defined manually and automatically used to estimate meteorological data. Legend: Neurons number in the first layer (N1), Neu-
rons number in the second layer (N2), First layer functions (F1), Second layer functions (F2),Training Type (TR), Unused data (X).  

Characteristics defined manually 

Data Stations Estimators MLP MLR RBF 

1° 2° 3° N1 N2 F1 F2 TR X N1 F1 

Evaporation, Maximum Temperature, Relative Humidity CG CO IT RJ 30 15 logsig tansig trainbfg X 30 Gauss 

CO RJ IT CG 30 15 logsig tansig trainbfg X 30 Gauss 

IT RJ CO CG 30 15 logsig tansig trainbfg X 30 Gauss 

RJ PA RE CO 30 15 logsig tansig trainbfg X 30 Gauss 

PA RJ RE CO 30 15 logsig tansig trainbfg X 30 Gauss   

RE RJ PA CO 30 15 logsig tansig trainbfg X 30 Gauss 

Characteristics defined in the model MLP-GA 

Data Stations Estimators λ N1 N2 F1 F2 TR     

1° 2° 3° 4° 5° 

Evaporation CG CO IT PA X X S 30 15 satlin logsig traingd 

CO CG IT RE RJ X S 30 15 satlin satlin trainbfg 

IT CO CG PA RE RJ S 30 15 purelin purelin trainrp 

RJ CG PA X X X N 30 15 logsig satlin trainbfg 

PA CG IT RJ X X N 30 15 purelin purelin trainrp   

RE CO IT RJ X X N 30 15 purelin logsig trainbfg 

Maximum temperature CG CO RJ X X X S 30 15 tansig satlin trainbfg 

CO CG IT PA X X S 30 15 satlin satlin trainrp 

IT CG CO RJ X X N 30 15 logsig satlin trainbfg 

RJ CG IT X X X S 30 15 purelin logsig trainlm 

PA CG CO IT RE X N 30 15 purelin satlin traingd   

RE PA X X X X N 30 15 purelin purelin trainrp 

Relative humidity CG IT RJ PA X X S 30 15 purelin satlin trainbfg 

CO IT RJ X X X N 30 15 purelin logsig trainrp 

IT CG CO PA X X S 30 15 purelin purelin trainbfg 

RJ CG CO IT PA X S 30 15 purelin tansig traingd 

PA CO IT RE X X N 30 15 Purelin satlin traingd 

RE CG CO PA X X S 30 15 Tansig logsig trainbfg   
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ates the absolute difference between the real and estimated 
values, root mean square error (RMSE) Eq. (9) which 
measures the root mean square of errors between actual 
and estimated values, mean absolute percent error (MPE) 
Eq. (10) which presents the average difference between 
the real and estimated values in percentage, concordance 
index (D) Eq. (11) which measures the predicted values 
accuracy in relation to estimated values and the confidence 
index (C) Eq. (12) which allows the joint analysis of the 
precision and accuracy of the results obtained. (Fonseca 
et al., 2012; Pezzopane et al., 2012; Bruce and Bruce, 
2019; Korstanje, 2021; Auffarth, 2021; Aschauerand 
Marty, 2021; Giovanella et al., 2021; Fine et al., 2022). 

r =

PN

j = 1
xj − xð Þ oj − Oð Þ

Nffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
PN

j = 1
(xj − x)2

N

s

·

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
PN

j = 1
oj − Oð Þ

2

N

s ð7Þ

MAE =

Pn

j = 1
Oj − xj
�
�

�
�

n
ð8Þ

RMSE ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Pn

j¼1
ðOj � xjÞ

2

n

v
u
u
u
t

ð9Þ

MPE =

Pn

j = 1

Oj − xjj j
Oj

n
:100 ð10Þ

The confidence index (C) Eq. (12) is calculated by the 
product of the correlation coefficient (r) and by the agree-
ment index (D) Eq. (11). Their values range from zero (0) 
for no agreement to one (1) for perfect agreement (Pezzo-
pane et al., 2012). Table 3 shows the performance evalua-
tion criteria. 

D = 1 −

Pn

j = 1
oj − xj
� �2

Pn

j = 1
jxj − 0j þ joj − 0j
� �2

ð11Þ

C = r:Dð Þ ð12Þ

where: n or N represents the number of data used, Oj the 
observed value, xj the value estimated by the techniques 
employed, O the average of the observed data and x the esti-
mated data average. 

In addition to these methods, statistical measures of 
average (M), maximum (MAX), minimum (MIN) and 
standard deviation (SD) were also used to compare the 
estimated meteorological data with the stations. 

3. Results 

3.1. Estimation results and filling in evaporation data 
From Table 4 it is possible to see that the models 

based on artificial intelligence ANNs MLP, RBF and 
MLP-GA presented results superior to those presented by 
the MLR model. Analyzing the results highlighted by the 
measures of (r), RMSE, MAE, (D) and (C). Another 
important aspect is that in five of the six locations studied, 
the MLP-GA model was superior in the evaporation esti-
mates. This fact can be confirmed by analyzing the results 
of each error measure obtained by the MLP-GA model, 
which were lower and presented MPE between 6.01% to 
9.67%, characterizing that the data estimated by this 
model have an accuracy above 90%. 

Comparing the results presented for the CG region, it 
is observed that the MLR, MLP and RBF models also 
demonstrate high indexes of (r) with the real data. How-
ever, the measurements of RMSE, MAE and MPE indicate 
that the MLP-GA model showed less variations in its esti-
mates, characterizing greater precision. 

For CO region, the MLP-GA model also presented 
the highest indexes of (r), having similarly demonstrated 
high values of (D) and (C), which characterizes the per-
formance of this model in optimum. Comparing the RMSE 
obtained by the MLP-GA model with the measurements 
obtained by the other models, it appears that the RMSE 
obtained by the MLP-GA model is approximately 13% 
less than the RMSE obtained by the MLP, 30% less than 
that obtained by the RBF and 23% less than the error pre-
sented by the MLR. 

For IT region, it is also proved that the Evaporation 
estimated by MLP-GA reached the highest values of (r), 
(D) and (C), which demonstrates a high relationship with 
the actual data. Another important point is that the RMSE, 
MAE and MPE error measurements generated with the 
MLP-GA model were lower than the errors shown by the 

Table 3 - Criteria for evaluating and analyzing the performance of mod-
els based on the confidence index.  

IC value Performance 

> 0.85 Optimal 

0.76 a 0.85 Verygood 

0.66 a 0.75 Good 

0.61 a 0.65 Intermediate 

0.51 a 0.60 Tolerable 

0.41 a 0.50 Bad 

≤ 0.40 Terrible   
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other models, remaining at 8.73 mm for RMSE, 6.87 mm 
for MAE and 6.01% for MPE (Table 4). 

In PA region, the MLP-GA model also demonstrated a 
high aptitude in estimating Evaporation, indicating that the 
estimated data are highly associated with the actual values. 
Comparing the MAE values obtained by MLP-GA with 

those obtained by the other models, it is possible to observe 
that the MAE presented by MLP-GA is 26% lower than the 
MAE obtained by MLP, 41% less than that achieved by RBF 
and 50% lower than that obtained by the MLR. 

In the RE region estimates, the MLP-GA model pre-
sented an MPE of 9.25%, and demonstrated high rates of 

Table 4 - The Real data analysis and results of evaporation estimates for different regions of the state of Rio de Janeiro, Brazil. Indices: mean (M), max-
imum (MAX), minimum (MIN), standard deviation (SD), correlation coefficient (r), root of the mean square error (RMSE), mean absolute error (MAE), 
mean percentage error (MPE), agreement index (D), confidence index (C). Models: multiple linear regression (MLR), Multilayer Perceptron (MLP), 
Radial Basis Function (RBF), hybrid model genetic algorithm + Multilayer Perceptron (MLP-GA).  

Actual data M MAX MIN SD 

Evaporation (CG) 104.78 159.20 65.30 26.36 

Evaporation (CO) 47.78 78.10 32.10 13.11 

Evaporation (IT) 117.12 188.40 60.60 36.01 

Evaporation (PA) 81.49 138.90 46.90 22.78 

Evaporation(RE) 132.00 212.30 67.60 36.72 

Evaporation (RJ) 99.22 142.10 70.00 18.82 

Estimated data (CG) Models M MAX MIN SD (r) RMSE MAE MPE (%) (D) (C) 

Evaporation MLR 98.83 144.57 68.31 20.19 0.82 16.10 12.40 11.90 0.87 0.71 

MLP 104.24 143.49 69.91 25.81 0.85 14.20 10.00 9.80 0.92 0.78 

RBF 99.74 135.77 69.23 20.79 0.79 16.54 12.69 12.10 0.86 0.68   

MLP-GA 106.78 146.62 74.53 21.62 0.88 12.45 9.39 9.67 0.93 0.82 

Estimated data (CO) Models M MAX MIN SD (r) RMSE MAE MPE (%) (D) (C) 

Evaporation MLR 45.66 67.17 29.16 10.82 0.94 5.03 4.10 8.32 0.95 0.90 

MLP 45.86 65.44 28.77 11.62 0.95 4.42 3.21 6.50 0.97 0.92 

RBF 45.69 65.38 30.66 10.25 0.93 5.58 4.04 7.93 0.94 0.87   

MLP-GA 47.97 72.25 32.22 11.77 0.96 3.86 3.07 6.65 0.97 0.93 

Estimated data (IT) Models M MAX MIN SD (r) RMSE MAE MPE (%) (D) (C) 

Evaporation MLR 117.21 176.85 81.78 27.53 0.95 13.11 11.10 13.11 0.95 0.90 

MLP 117.12 173.52 74.33 31.78 0.95 11.38 9.24 9.42 0.97 0.92 

RBF 115.58 181.53 75.43 32.02 0.94 12.00 10.35 10.01 0.97 0.91   

MLP-GA 114.71 194.42 65.71 33.70 0.97 8.73 6.87 6.01 0.98 0.96 

Estimated data (PA) Models M MAX MIN SD (r) RMSE MAE MPE (%) (D) (C) 

Evaporation MLR 91.08 134.97 60.86 18.44 0.96 11.83 10.76 15.18 0.92 0.88 

MLP 86.56 147.88 57.10 24.33 0.94 9.38 7.28 9.17 0.96 0.90 

RBF 87.33 134.29 55.10 20.02 0.91 10.78 9.12 11.90 0.93 0.85   

MLP-GA 82.51 127.53 48.52 21.17 0.95 6.97 5.34 6.54 0.97 0.93 

Estimated data (RE) Models M MAX MIN SD (r) RMSE MAE MPE (%) (D) (C) 

Evaporation MLR 107.24 180.07 64.62 29.05 0.92 28.73 25.32 18.44 0.82 0.76 

MLP 131.43 198.88 88.76 36.93 0.85 19.67 14.46 11.13 0.92 0.78 

RBF 114.00 196.66 81.77 31.18 0.85 25.98 21.39 15.54 0.85 0.72   

MLP-GA 126.49 192.94 81.77 30.53 0.88 17.86 12.22 9.25 0.92 0.82 

Estimated data (RJ) Models M MAX MIN SD (r) RMSE MAE MPE (%) (D) (C) 

Evaporation MLR 114.10 145.38 93.24 13.66 0.71 19.71 17.83 19.12 0.65 0.46 

MLP 100.13 139.79 68.89 15.61 0.84 9.96 7.77 7.89 0.91 0.76 

RBF 98.77 135.07 76.17 14.68 0.65 14.24 8.49 8.05 0.77 0.50   

MLP-GA 105.33 144.77 71.08 21.11 0.82 13.43 8.84 9.11 0.87 0.72   
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(r), (D) and (C) with the real data, characterizing that the 
estimated data have more than 90% accuracy. 

In RJ region, the model that proved to be superior 
was the MLP, obtaining the highest coefficient (r) between 
the estimated and registered data, the lowest MAE (7.77 
mm), the lowest RMSE (9.96), and MPE equal to 7.89%, 
which characterizes that each data estimated by the MLP 
model had a hit rate of 92.11%. 

After comparing the results, it was decided to use the 
MLP-GA to fill the gaps in the regions of CG, CO, IT, PA 
and RE, and the MLP model to fill the gaps in RJ. Fig. 7 
presents the real data, the estimates presented by the best 
models, the dispersion of the values and the data filled in. 

3.2. Estimation results and filling in maximum 
temperature data 

The results indicatethatall models had low error rates 
and high (r) values in the maximum temperature estimate 
(Table 5). However, despite the low variation between the 
errors obtained, it is possible to verify that the MLP-GA 
model proved to be superior, presenting more accurate 
estimates than the other models. 

For the CG region, it is noted that the values of MAE 
and MPE obtain a low variation for the dissipated models, 
keeping between 0.32 and 0.37 for MAE and 1.09 and 1.25 
for MPE, which indicates that the estimated values may 

Figure 7 - Actual evaporation data (A), evaporation estimate results by models (B), real x estimated data dispersion (C) and filled in by models (D) for 
different regions of the state of Rio de Janeiro, Brazil. Regions: Campos dos Goytacazes (CG), Cordeiro (CO), Itaperuna (IT), Paty do Alferes (PA), 
Resende (RE), Rio de Janeiro (RJ). 
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have an error between 0.32 °C and 0.37 °C and that the 
estimated data are 99% accurate. 

In the CO region it is also possible to prove that the 
maximum temperature estimated by the models is highly 
accurate. However, comparing the results obtained by the 
MLP-GA with the other models, it appears that the RMSE 

presented by the MLP-GA model is 13% less than that 
achieved by the MLR model, 8% less than that obtained 
by MLPe 37% less than the obtained by the RBF model, 
which demonstrates less variation in the estimated data 
and greater precision of the values obtained by the MLP- 
GA. 

Table 5 - Analysis of real data and results of maximum temperature estimates for different regions of the state of Rio de Janeiro, Brazil. Indices: mean 
(M), maximum (MAX), minimum (MIN), standard deviation (SD), correlation coefficient (r), root of the mean square error (RMSE), mean absolute error 
(MAE), mean percentage error (MPE), agreement index (D), confidence index (C). Models: multiple linear regression (MLR), Multilayer Perceptron 
(MLP), Radial Basis Function (RBF), hybrid model genetic algorithm + Multilayer Perceptron (MLP-GA).  

Actual data M MAX MIN SD 

Maximum temperature (CG) 29.86 34.32 26.96 2.11 

Maximum temperature (CO) 27.05 31.59 23.21 2.07 

Maximum temperature (IT) 30.08 35.21 26.45 2.16 

Maximum temperature (PA) 27.76 32.96 24.00 2.22 

Maximum temperature (RE) 28.15 32.70 23.80 2.34 

Maximum temperature (RJ) 30.26 35.31 26.96 2.48 

Estimated data (CG) Models M MAX MIN SD (r) RMSE MAE MPE (%) (D) (C) 

Maximum temperature MLR 29.65 34.18 26.34 2.08 0.98 0.48 0.37 1.24 0.99 0.97 

MLP 29.73 34.08 26.71 1.99 0.98 0.46 0.36 1.19 0.99 0.97 

RBF 29.66 34.55 26.35 2.18 0.98 0.46 0.37 1.25 0.99 0.97   

MLP-GA 29.58 34.06 26.34 2.16 0.99 0.44 0.32 1.09 0.99 0.98 

Estimated data (CO) Models M MAX MIN SD (r) RMSE MAE MPE (%) (D) (C) 

Maximum temperature MLR 27.19 31.89 23.95 2.04 0.98 0.43 0.38 1.43 0.99 0.97 

MLP 27.17 32.02 23.54 2.08 0.98 0.41 0.34 1.25 0.99 0.97 

RBF 27.23 31.79 23.89 2.10 0.97 0.52 0.41 1.53 0.98 0.96   

MLP-GA 27.29 31.58 23.82 2.03 0.99 0.38 0.31 1.15 0.99 0.98 

Estimated data (IT) Models M MAX MIN SD (r) RMSE MAE MPE (%) (D) (C) 

Maximum temperature MLR 29.98 34.59 26.13 2.10 0.97 0.49 0.41 1.35 0.99 0.96 

MLP 30.19 35.22 26.24 2.21 0.98 0.47 0.36 1.21 0.99 0.97 

RBF 30.07 35.38 26.61 2.11 0.97 0.49 0.40 1.32 0.98 0.95   

MLP-GA 30.06 35.26 26.29 2.25 0.98 0.44 0.32 1.07 0.99 0.97 

Estimated data (PA) Models M MAX MIN SD (r) RMSE MAE MPE (%) (D) (C) 

Maximum temperature MLR 27.45 32.03 23.67 2.10 0.99 0.47 0.36 1.29 0.99 0.98 

MLP 27.66 32.72 24.17 2.09 0.99 0.38 0.32 1.17 0.99 0.98 

RBF 27.70 31.74 24.27 2.10 0.98 0.43 0.31 1.12 0.99 0.97   

MLP-GA 27.64 32.06 23.73 2.15 0.99 0.38 0.27 0.95 0.99 0.98 

Estimated data (RE) Models M MAX MIN SD (r) RMSE MAE MPE (%) (D) (C) 

Maximum temperature MLR 27.30 32.49 23.37 2.33 0.95 1.10 0.89 3.16 0.94 0.90 

MLP 27.65 32.26 23.16 2.37 0.97 0.72 0.56 2.00 0.98 0.95 

RBF 27.44 32.61 23.21 2.37 0.96 0.95 0.74 2.65 0.96 0.92   

MLP-GA 28.19 33.48 24.37 2.25 0.97 0.57 0.43 1.55 0.98 0.95 

Estimated data (RJ) Models M MAX MIN SD (r) RMSE MAE MPE (%) (D) (C) 

Maximum temperature MLR 30.76 36.09 26.54 2.39 0.91 1.14 0.90 3.05 0.94 0.86 

MLP 30.54 35.49 27.65 2.39 0.95 0.79 0.59 2.01 0.97 0.92 

RBF 30.55 35.32 28.03 2.46 0.94 0.89 0.69 2.33 0.96 0.91   

MLP-GA 30.20 35.66 27.62 2.43 0.97 0.58 0.47 1.57 0.99 0.96   
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For IT region, it is observed that the MPE indices 
presented in the maximum temperature estimate ranged 
from 1.07% to 1.35%, which indicates that the models 
obtained an average precision above 98%. In addition to 
this fact, it is noticed that the MLP-GA model presented 
the highest indexes of (r), (D) and (C), which indicates 
that the model was more accurate. 

For the PA region, the results exposed by the model 
in the maximum temperature estimate indicate that the (r) 
values are highly correlated with the actual data, and that 
the quality of the estimates is classified as optimal. Ana-
lyzing the RMSE, MAE and MPE values obtained by 
MLP-GA, it is observed that the RMSE was 0.38 °C, the 
MAE was 0.27 °C and the MPE was 0.95%, which means 
that the estimated values have more than 99% of accuracy 
with actual values. 

In RE region, the results obtained by MLP-GA 
expose a great difference between the models. From the 
MAE values, it can be seen that the value obtained by the 
MLP-GA model is more than 100% less than that obtained 
by MLR, 30% less than that achieved by MLP and 72% 
less than the MAE achieved by RBF. 

In RJ region, as well as in RE, it is possible to notice 
a greater variation between the estimates, where it appears 
that the MLP-GA model presented more accurate results 
than the other models. The values of MAE and MPE 
reached by MLP-GA indicate that the average error of this 
model is 0.47 °C in each estimate, and that the estimated 
data have an accuracy greater than 98%. 

After comparing the results, it was decided to use the 
MLP-GA to fill the gaps in the maximum temperature 
variable in all six regions. Due to the lack of data from the 
same period in some of the regions applied in the estimate, 
it was not possible to fill 100% of the actual failures that 
occurred, being possible to fill 75% in IT, 71% in PA and 
89% in RE, real data, those estimated by the best model, 
the dispersion of values and the data filled in data are 
represented in Fig. 8. 

3.3. Estimation results and filling in relative humidity 
data 

The results of the relative humidity estimate high-
light that the MLP-GA model presented greater precision 
in its estimates when compared with the other models. 
Analyzing the results shown in Table 6, it can be seen that 
the (r), MAE and EMP indexes achieved by the MLP-GA 
model ranged from 0.89 to 0.97, 0.90 to 1.49 and from 
1.15% to 1.90%, highlighting that the accuracy of this 
model was greater than 98%. 

In the CG region, it is observed through the (C) 
indexes achieved by the models that only the MLP and 
MLP-GA models achieved a performance classified as 
very good. However, despite presenting a small difference, 
it is still possible to state that the MLP-GA model presents 
more accurate results than the MLP. 

In CO region, the indexes of (r) and (C) indicate that 
the values estimated by MLP-GA demonstrate a high rela-
tionship with the actual relative humidity data. It is also 
confirmed that the value of RMSE, MAE and MPE were 
1.31, 1.03 and 1.28%, being below the values of RMSE, 
MAE and MPE obtained by the other models (Table 6). 

For the IT region, the RMSE index achieved with the 
MLP-GA model was 1.73, which is 41% less than the 
RBF, 26% less than the MLR and 19% less than the error 
obtained by the MLP model. It is also noticed that the 
indexes achieved by the MLR and MLP models were con-
siderably close, reaching the same MAE, (D) and (C) 
values. 

For PA region, the MPE exposed by the MLP-GA 
model in the relative humidity estimate indicates about 
98.85% accuracy with the actual data. Analyzing the MAE 
and (C) values obtained by MLP-GA, it is noted that its 
error was only 0.90 and that the confidence of the esti-
mated values was classified as excellent. 

In the RE region, the MLP-GA model obtained, as in 
all the analyzed places, high indexes of (r), (D) and (C), 
indicating that the measured data have a high association 
with the real values and that the information has a high 
level of agreement and trust. 

In the RJ region, the MAE and MPE values achieved 
by the MLP-GA indicate that the average error of this 
model is 1.36 in each estimate, and that the estimated data 
have an accuracy greater than 98%. Comparing the MAE 
values obtained by all models, we can verify that MLP- 
GA is 56% more accurate than MLR, 18% more than MLP 
and 49% more than RBF. 

After comparing the results, it was decided to use the 
MLP-GA to fill in the gaps in the relative humidity vari-
able of all six regions. Due to the lack of data from the 
same period in some of the regions applied in the estimate, 
it was not possible to fill 100% of the actual failures that 
occurred, making it possible to fill 96% in CO, 54.55% in 
PA, 63% in RE and 72% in RJ. Fig. 9 shows the real data, 
those estimated by the best model, the dispersion of the 
values and the completed data. 

4. Discussion 
Comparing the methodologies adopted for gaps in 

the meteorological data reconstruction used in this study, it 
was observed that the hybrid approach MLP-AG with 
characteristics of autonomous training demonstrated 
greater precision through the statistical measures used. It 
was also possible to verify that despite the model perform-
ing a large number of possible combinations in search of a 
solution, it presented a low execution time (Table 7). 

Even considering that to achieve such results the 
MLP-AG model had a larger set of information, it's possi-
ble to notice that in several places it used the same number 
of variables or a lower number, such as to estimate eva-
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poration in RJ, the maximum temperature in CG, RJ and 
RE and relative humidity in CO. In addition, other factors 
where differences between manual and autonomous train-
ing approaches can be noted are related to the training set-
tings adopted, such as the transfer functions of the hidden 
layers and the types of training of each approach. 

This fact justifies the idea that the choice of topology 
and characteristics of an ANN for a given problem can be 
seen as a problem of combinatorial optimization, defined 
in the space of possible architectures (Rocha et al., 2008). 
Thus, a possible explanation for the best resource fulness 
of the MLP-GA model is that the greater number of tests 
and adjustments performed by the same model helped him 
in trying to achieve an optimal combination, while the 

manual training approach may have restricted the reach of 
the model. Therefore, we can infer that the MLP-GA 
model used the evolutionary process to adapt to the stu-
died locations, which allowed for low error rates with 
small variations between regions (Table 8). 

Within this context, factors such as the quality and 
quantity of data and various other information directly 
influence the performance of the models, causing them to 
have low or high error rates. Even so, it is possible to ver-
ify that the indexes achieved by MLP-GA are largely 
similar to those obtained by several methodologies found 
in the literature (Table 9). 

Regarding the (r), RMSE, MAE and MPE indices 
obtained by MLP-GA for the evaporation estimate, it 

Figure 8 - Actual maximum temperature data (A), results of the maximum temperature estimate by the MLP-GA model (B), dispersion x estimated real 
data (C) and data filled by the model (D) for different regions of the state of Rio de January, Brazil. Regions: Campos dos Goytacazes (CG), Cordeiro 
(CO), Itaperuna (IT), Paty do Alferes (PA), Resende (RE), Rio de Janeiro (RJ). 
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appears that these ranged from 0.82 to 0.97, 3.86 to 17.86, 
3.07mm to 12.22mm and 6.01% to 9.67% indicating that 
the model presented the average precision between the 
regions to which it was applied from 90.23% to 93.99%. 

To estimate the maximum temperature, the (r), 
RMSE, MAE and MPE indices obtained by MLP-GA va-

ried from 0.97 to 0.99, 0.38 to 0.58, 0.27 °C to 0.47 °C and 
0.95% to 1.57%. These values indicate that the model pre-
sented an average precision between the regions, to which 
it was applied from 98.5% to 99%. Values with high pre-
cision indexes were also found by Coulibaly and Evora 
(2007) in the watershed of Gatineau, in northeastern 

Table 6 - The real data analysis and results of relative humidity estimates for different regions of the state of Rio de Janeiro, Brazil. Indices: mean (M), 
maximum (MAX), minimum (MIN), standard deviation (SD), correlation coefficient (r), root of the mean square error (RMSE), mean absolute error 
(MAE), mean percentage error (MPE), agreement index (D), confidence index (C). Models: multiple linear regression (MLR), Multilayer Perceptron 
(MLP), Radial Basis Function (RBF), hybrid model genetic algorithm + Multilayer Perceptron (MLP-GA).  

Actual data M MAX MIN SD 

Relative humidity (CG) 76.02 80.70 69.37 2.84 

Relative humidity (CO) 79.66 86.73 71.12 4.98 

Relative humidity (IT) 72.10 82.40 61.88 6.14 

Relative humidity (PA) 79.33 83.62 74.12 3.54 

Relative humidity (RE) 77.54 84.08 68.16 4.38 

Relative humidity (RJ) 72.62 78.98 62.75 4.01 

Estimated data (CG) Models M MAX MIN SD (r) RMSE MAE MPE (%) (D) (C) 

Relative humidity MLR 76.29 81.85 69.58 3.28 0.80 1.94 1.46 1.92 0.88 0.71 

MLP 76.44 80.68 69.32 3.11 0.87 1.56 1.07 1.41 0.92 0.80 

RBF 76.45 82.09 70.24 3.09 0.81 1.86 1.40 1.84 0.88 0.71   

MLP-GA 76.29 82.90 69.88 3.07 0.89 1.39 1.03 1.35 0.94 0.84 

Estimated data (CO) Models M MAX MIN SD (r) RMSE MAE MPE (%) (D) (C) 

Relative humidity MLR 78.74 87.31 69.36 5.06 0.95 1.75 1.42 1.78 0.97 0.92 

MLP 78.95 87.47 70.53 4.86 0.94 1.74 1.24 1.54 0.97 0.91 

RBF 79.31 88.24 70.19 5.14 0.93 1.85 1.55 1.94 0.96 0.90   

MLP-GA 79.23 86.15 70.86 4.98  0.97 1.31 1.03 1.28 0.98 0.95 

Estimated data (IT) Models M MAX MIN SD (r) RMSE MAE MPE (%) (D) (C) 

Relative humidity MLR 73.21 81.01 63.56 5.06 0.96 2.19 0.96 2.61 0.96 0.92 

MLP 72.73 78.86 63.97 5.20 0.95 2.06 0.96 2.29 0.96 0.92 

RBF 73.01 78.21 64.64 4.63 0.94 2.45 0.94 2.91 0.94 0.89   

MLP-GA 72.45 80.97 61.85 5.56 0.96 1.73 0.98 1.89 0.98 0.94 

Estimated data (PA) Models M MAX MIN SD (r) RMSE MAE MPE (%) (D) (C) 

Relative humidity MLR 79.74 88.37 68.43 5.65 0.93 2.67 2.20 2.80 0.91 0.84 

MLP 79.64 85.54 69.69 4.80 0.91 2.12 1.67 2.12 0.93 0.84 

RBF 78.99 85.50 71.22 4.43 0.91 1.89 1.54 1.95 0.94 0.86   

MLP-GA 79.43 83.41 72.74 3.63 0.94 1.17 0.90 1.15 0.97 0.92 

Estimated data (RE) Models M MAX MIN SD (r) RMSE MAE MPE (%) (D) (C) 

Relative humidity MLR 76.38 85.32 64.98 6.00 0.85 3.33 2.50 3.24 0.88 0.75 

MLP 76.12 80.02 66.30 4.17 0.90 2.34 1.82 2.30 0.92 0.83 

RBF 76.61 82.99 67.59 4.79 0.89 2.31 1.79 2.30 0.93 0.83   

MLP-GA 76.57 80.32 68.56 3.86 0.90 2.09 1.49 1.87 0.93 0.84 

Estimated Data (RJ) Models M MAX MIN SD (r) RMSE MAE MPE (%) (D) (C) 

Relative humidity MLR 72.13 74.11 69.61 1.45 0.83 2.88 2.13 2.98 0.69 0.57 

MLP 72.39 76.33 66.94 2.98 0.84 2.14 1.61 2.28 0.89 0.75 

RBF 72.20 74.40 68.99 1.66 0.81 2.77 2.03 2.86 0.73 0.59   

MLP-GA 72.80 77.14 66.48 3.16 0.90 1.79 1.36 1.90 0.93 0.83   
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Canada, where they compared six types of artificial neural 
networks, among them MLP and RBF to estimate the 
maximum temperature. And by Kotsiantis et al. (2008) 
who obtained (r) indexes of 0.91 and RMSE of 3.07 
through the application of different regression models. 

In order to estimate the relative humidity, the MLP- 
GA model reached indexes of (r) between 0.89 and 0.97, 
RMSE between 1.17 and 2.09, MAE between 0.90 and 
1.49 and MPE between 1.15% and 1.90%. Low error rates 
were also found by Altan and Ustundag (2012), Coutinho 
et al. (2018) and Anjomshoaa and Salmanzadeh (2018), 
obtained by applying the techniques of Regression, Wave-
let Transform, RNA MLP and linear interpolation and 

cubic splines. Table 8 shows the variation of the results 
found in the literature. 

Although the results found in the literature demon-
strate high rates of accuracy in the estimates of the vari-
ables used in each study, it is still possible to observe that 
the MLP-GA model demonstrates more accurate preci-
sion. Among other factors that we can highlight, most of 
the approaches found in the literature are strictly super-
vised and depend directly on manual choices or statistical 
methods to define several parameters of each model, 
among them the predictors of each variable. These 
approaches differ from the MLP-GA that determines its 
characteristics autonomously, which can become extre-

Figure 9 - Actual relative humidity data (A), results of the relative humidity estimate by the MLP-GA model (B), dispersion of real x estimated data (C) 
and filled in by the model (D) for different regions of the state of Rio de January, Brazil. Regions: Campos dos Goytacazes (CG), Cordeiro (CO), Itaper-
una (IT), Paty do Alferes (PA), Resende (RE), Rio de Janeiro (RJ). 
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mely advantageous with the increase in the number of 
locations and variables to be filled, where the MLP-GA 
can streamline the process by finding acceptable combina-
tions to estimate the values of each region. 

5. Conclusion 
The results analysis achieved by the models in the 

estimation and filling of the meteorological data used 
allowed to conclude that the model that best adapted to the 

studied locations was o MLP-GA. having obtained in the 
majority of the regions the lowest values of RMSE, MAE 
and MPE, and also the highest correlation indexes (r) and 
reliability (C) with the real data. 

However, it also appears that the MLR, MLP and 
RBF models also showed satisfactory results in most of 
the locations, demonstrating high correlation indexes (r) 
and reliability with the real data. However, the results 
exposed by the ANN MLP highlight it as the second best 
alternative in estimating the studied variables. 

Table 9 - Results found in the literature on the estimation of meteorological data.  

Dados (r) RMSE MAE MPE (%) (D) Referências 

Mean temperature 0.93 2.46 X X X Kotsiantis et al. (2006) 

Maximum daily temperature 0.99 X 0.74 X X Coulibaly and Evora (2007) 

Minimum daily temperature 0.94 2.18 X X X Kotsiantis et al (2008) 

Maximum daily temperature 0.91 3.07 X X X 

Maximum temperature X X 0.64 X X Altan and Ustundag (2012) 

Relative Humidity X X 3.33 X X 

Minimum daily temperature X 0.70 X X X Woldesenbet et al. (2016) 

Maximum daily temperature X 0.90 X X X 

Minimum daily temperature 0.90 X X X X Thevakaran and Sonnadara (2017) 

Maximum daily temperature 0.90 X X X X 

Maximum temperature 0.97 0.41 0.32 1.05 0.99 Coutinho et al. (2018) 

Relative Humidity 0.94 1.95 1.47 1.85 0.96 

Mean temperature X 0.79 0.59 X X Anjomshoaa and Salmanzadeh (2018) 

Relative Humidity X X 2.25 X X 

Maximum temperature X X 5.26 X 0.82 Beguería et al. (2019) 

Minimum daily temperature 0.93 1.10 0.80 X X Shabalala et al. (2019) 

Maximum daily temperature 0.92 1.20 0.55 X X   

Table 7 - Runtime and generation of the individual that converged to the expected solution.   

Evaporation Maximum temperature Relative humidity 

Stations Generation Time in seconds Generation Time in seconds Generation Time in seconds 

CG 3 160.83 2 73.44 40 832.23 

CO 14 281.26 3 186.71 14 419.80 

IT 8 248.36 5 253.45 40 716.65 

PA 13 353.78 2 134.72 5 200.36 

RE 8 280.14 20 684.84 40 935.77 

RJ 40 529.62 29 387.58 40 614.62   

Table 8 - The results variation presented by the MLP-GA model in the estimation of meteorological data.  

Dados (r) RMSE MAE MPE (%) (D) (C) 

Evaporation 0.82 to 0.97 3.86 to 17.86 3.07 to 12.22 6.01 to 9.67 0.87 to 0.98 0.72 to 0.96 

Maximum temperature 0.97 to 0.99 0.38 to 0.58  0.27 to 0.47 0.95 to 1.57 0.98 to 0.99 0.95 to 0.98 

Relative humidity 0.89 to 0.97 1.17 to2.09 0.90 to 1.49 1.15 to 1.90 0.93 to 0.98 0.83 to 0.95   
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Another important fact observed was that the use of 
GA maximized the adaptability of ANN MLP, which 
made the model present more accurate results. However, 
the failures occurrence in the predictor variables deter-
mined by the model impaired part of the series filling of 
maximum temperature and relative humidity, which were 
not performed in 100%. 

In fact, more research is needed to explore the real 
gains from the MLP-GA model in estimating weather 
data. However, the results allow us to confirm that the 
MLP-GA model is a viable alternative to estimate and fill 
gaps in the meteorological data used. 
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