Intravenous sodium fluorescein enhances the visibility of vitreous during vitrectomy surgery for diabetic retinopathy

doc:fluoresceina_sodica_intravenosa_aumenta_a_visibilidade_do_vitreo_durante_a_cirurgia_de_vitrectomia_para_retinopatia_diabetica

Rubens Camargo Siqueira¹, Rodrigo Jorge², Fabio Canamary³

ABSTRACT

Objective: To observe the effectiveness of intravenous sodium fluorescein visibility in the vitreous during vitrectomy surgery in patients with diabetic retinopathy. **Methods**: Fourteen consecutive cases of vitreoretinal surgery for vitreous hemorrhage and tractional retinal detachment secondary to diabetic retinopathy underwent intravenous injection of sodium fluorescein to 20% 1 hour before the surgery. The images of the steps of the surgeries were recorded. **Results**: The sodium fluorescein stained green from the vitreous peripheral, vitreous base, posterior hyaloid, further improving visibility to a complete and more secure vitrectomy. The sodium fluorescein also stained fibrous points (sites of neovascularization) with high intensity making it easier its visibility. No complications associated with the dye injection were observed in all cases. **Conclusion**: Intravenous sodium fluorescein can be used safely for facilitating the observation of the vitreous, vitreous base, posterior hyaloid and sites of neovascularization. This technique can facilitate the process of vitrectomy in patients with diabetic retinopathy.

Keywords: Fluorescein; Diabetic retinopathy; Vitrectomy
INTRODUCTION

Vitreectomy is the treatment of choice for proliferative diabetic retinopathy with traction or persistent vitreous hemorrhage. It can frequently restore useful vision in diabetic patients and reduce the risk of visual loss from traction retinal detachment.

The use of dilute sterile sodium fluorescein (NaFl) has previously been suggested as an aid in vitrectomy. Except for two published letters, there are no large studies describing the safety and efficacy of intravitreal NaFl in vitreous surgery. However, there is a study that described the safety and efficacy to use Intravitreal sodium fluorescein to enhance the visibility of clear vitreous during vitreous surgery for macular hole.

We will describe in this paper the efficacy of Intravenous NaFl for enhances of visibility of vitreous during vitrectomy surgery for diabetic retinopathy.

METHODS

Fourteen consecutive vitreoretinal surgery cases for vitreous hemorrhage and tractional retinal detachment, secondary to diabetic retinopathy, were submitted to intravenous sodium fluorescein 20% injection 1 hour previously the surgery (Table 1).

Surgery was performed under peribulbar anesthesia by a single surgeon (R.C.S). Standard Three-port Pars Plana Vitrectomy was performed using Accurus vitrectomy machine (Alcon, Fort Worth, Texas, USA) with the sclerotomies placed 4 mm (phakic eyes) or 3.5 mm (aphakic and pseudophakic eyes) posterior to the limbus. We do not use special filter to observe the contrast.

Limited core vitrectomy and removal of the vitreous close to the sclerotomy used for the insertion of the vitreous cutter were initially performed. In phakic eyes, in order to avoid direct trauma to the lens caused by the vitrectomy instruments, vitrectomy at the vitreous base from the 6 to 12 O’clock position was performed with the vitreous cutter held by the right hand, and from the 12 to 6 O’clock position was performed with the left hand.

Initially, the central vitreous was removed (core vitrectomy), followed by peeling of dense epiretinal membranes. Vitreous shaving was performed with scleral indentation by an assistant using a muscle hook. The images of all surgery steps were recorded. Finally, the retina was inspected by indirect ophthalmoscope and fluid-gas exchange completed the procedure.

RESULTS

The study group consisted of 14 diabetic retinopathy patients. Fluorescein stained the peripheral uncut clear vitreous green, vitreous base, posterior hyaloid and improved the visibility in all instances.

At surgery time fluorescein stained the whole vitreous (Figure 1A), especially the vitreous base and the posterior hyaloid in the posterior pole. Fluorescein also stained fibrous points (neovascularization sites) with stronger intensity making it easier these areas observation (Figure 1 D).

At vitreous base shaving, fluorescein helped in the visualization even of the retina vitreous junction, following the traction movements of the vitreous when the vitrectomy probe gets closer from the retina, and evidencing the limits of vitreous base with the periphery retina, reducing the incidence of iatrogenic periphery tears. During posterior hyaloid detachment procedure, it was possible to see the hyaloid and the adherent’s areas (Figure 1 B,C).

There was no stain of the lens or capsule (pseudophakic) during surgery, and it was possible to notice that fluorescein stained the anterior chamber, especially at pseudophakic patients, but did not affected the vitreous observation, not interfering at vitrectomy. No complications associated with the dye injection were observed in all cases.
DISCUSSION

The vitrectomy has shown an increase in its statement due to technical improvement mainly through better performance of equipment, speed cutting and increased less invasive systems (small gauge). One of the new tools of vitrectomy are substances capable of dyeing the structures intraocular facilitating visibility. Some dyes have been well studied as indocyanine green (ICG), trypan blue and more recently the sodium fluorescein.

In order to avoid the eye toxicity and also greater manipulation during surgery (injection and aspiration of the dye), we evaluated in this study the possibility of the use of intravenous sodium fluorescein to as a dye for use in vitrectomy.

In this study we used the intravenous sodium fluorescein one hour before surgery in order to improve the visibility of areas of interest during surgery for vitrectomy in patients with diabetic retinopathy. We chose this group of patients because they show a drop of blood-retinal barrier thus facilitating the leak of sodium fluorescein for vitreous cavity. The patients who were included in this study had diabetic retinopathy with vitreous hemorrhage (9 patients) and tractional retinal detachment (7 patients).

We observed that the sodium fluorescein stained the vitreous body, vitreous base, posterior hyaloid and sites of neovascularization. There was no need to use any special filter for viewing the contrast. In all patients, the color green was the sodium fluorescein observed with ease and especially when put the light pipe near the area to be examined. To remove the posterior hyaloid with active aspiration, we observe that the sodium fluorescein provided a clear vision of the posterior hyaloid moved. We also observed that the sites of neovascularization became impregnated by sodium fluorescein. This facilitated the prevention of bleeding during the removal of posterior hyaloid.

Another feature of intravenous sodium fluorescein is that there was no impregnation of the lens or the posterior capsule in pseudophakic eyes. This fact is one more advantage compared to other dye such as trypan blue.

Table 1

Results of the vitreoretinal surgery for vitreous hemorrhage and tractional retinal detachment secondary to diabetic retinopathy underwent intravenous injection of fluorescein to 20% 1 hour before the surgery Visual acuity is best-corrected Snellen acuity

<table>
<thead>
<tr>
<th>Patient</th>
<th>Age</th>
<th>Sex</th>
<th>Retinal status</th>
<th>Vitreous status</th>
<th>Visual acuity preop</th>
<th>Visual acuity postop</th>
<th>IOP preop</th>
<th>IOP postop</th>
<th>Complication related to fluorescein</th>
<th>Lens status</th>
<th>Follow up (months)</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>54</td>
<td>M</td>
<td>TRD</td>
<td>VH</td>
<td>CF</td>
<td>LP</td>
<td>12</td>
<td>62</td>
<td>No</td>
<td>Phakic</td>
<td>7</td>
</tr>
<tr>
<td>2</td>
<td>36</td>
<td>M</td>
<td>ERM</td>
<td>VH</td>
<td>HM</td>
<td>20/400</td>
<td>10</td>
<td>14</td>
<td>No</td>
<td>Phakic</td>
<td>7</td>
</tr>
<tr>
<td>3</td>
<td>75</td>
<td>F</td>
<td>Without TRD</td>
<td>VH</td>
<td>20/60</td>
<td>20/30</td>
<td>14</td>
<td>11</td>
<td>No</td>
<td>Phakic</td>
<td>8</td>
</tr>
<tr>
<td>4</td>
<td>36</td>
<td>M</td>
<td>TRD</td>
<td>clear</td>
<td>CF</td>
<td>CF</td>
<td>13</td>
<td>32</td>
<td>No</td>
<td>Phakic</td>
<td>4</td>
</tr>
<tr>
<td>5</td>
<td>29</td>
<td>F</td>
<td>TRD</td>
<td>clear</td>
<td>20/30</td>
<td>20/80</td>
<td>14</td>
<td>44</td>
<td>No</td>
<td>Pseudophakic</td>
<td>9</td>
</tr>
<tr>
<td>6</td>
<td>32</td>
<td>M</td>
<td>Without TRD</td>
<td>VH</td>
<td>HM</td>
<td>20/80</td>
<td>15</td>
<td>13</td>
<td>No</td>
<td>Pseudophakic</td>
<td>6</td>
</tr>
<tr>
<td>7</td>
<td>38</td>
<td>F</td>
<td>TRD</td>
<td>clear</td>
<td>VH</td>
<td>20/60</td>
<td>15</td>
<td>16</td>
<td>No</td>
<td>Phakic</td>
<td>2</td>
</tr>
<tr>
<td>8</td>
<td>43</td>
<td>M</td>
<td>ERM</td>
<td>Without TRD</td>
<td>Clear</td>
<td>20/150</td>
<td>16</td>
<td>50</td>
<td>No</td>
<td>Phakic</td>
<td>6</td>
</tr>
<tr>
<td>9</td>
<td>83</td>
<td>F</td>
<td>TRD</td>
<td>VH</td>
<td>20/100</td>
<td>20/80</td>
<td>12</td>
<td>18</td>
<td>No</td>
<td>Pseudophakic</td>
<td>6</td>
</tr>
<tr>
<td>10</td>
<td>27</td>
<td>F</td>
<td>TRD</td>
<td>clear</td>
<td>20/60</td>
<td>20/100</td>
<td>14</td>
<td>54</td>
<td>No</td>
<td>Phakic</td>
<td>4</td>
</tr>
<tr>
<td>11</td>
<td>69</td>
<td>M</td>
<td>TRD</td>
<td>VH</td>
<td>20/200</td>
<td>CF</td>
<td>12</td>
<td>10</td>
<td>No</td>
<td>Aphakic</td>
<td>4</td>
</tr>
<tr>
<td>12</td>
<td>67</td>
<td>F</td>
<td>TRD</td>
<td>VH</td>
<td>HM</td>
<td>CF</td>
<td>14</td>
<td>16</td>
<td>No</td>
<td>Phakic</td>
<td>7</td>
</tr>
<tr>
<td>13</td>
<td>51</td>
<td>M</td>
<td>Without TRD</td>
<td>VH</td>
<td>20/100</td>
<td>20/30</td>
<td>15</td>
<td>19</td>
<td>No</td>
<td>Pseudophakic</td>
<td>5</td>
</tr>
<tr>
<td>14</td>
<td>15</td>
<td>F</td>
<td>TRD</td>
<td>clear</td>
<td>20/25</td>
<td>20/200</td>
<td>13</td>
<td>16</td>
<td>No</td>
<td>Phakic</td>
<td>5</td>
</tr>
</tbody>
</table>

Legend: LP - light perception; CF - finger counting; HM - hand movements; TRD - Tractional retinal detachment; VH - vitreous hemorrhage; ERM - epiretinal membrane

Intravenous sodium fluorescein enhances the visibility of vitreous during vitrectomy surgery for diabetic retinopathy

The intravenous sodium fluorescein may be a good tool to get vitreoretinal surgery in patients with diabetic retinopathy. Meanwhile a greater number of cases will need to assess the real benefit of this technique.

REFERENCES

ENDEREÇO PARA CORRESPONDÊNCIA:
Dr. Rubens Camargo Siqueira
Rua Saldanha Marinho, 2815 – Conj.42
São José do Rio Preto
CEP 13.010-100 – SP – Brasil
Tel: (17)32345858
e-mail: rubenssiqueira@terra.com.br.