Sucessfull management of bilateral presumed Candida endogenous endophtalmitis following pancreatitis

Tratamento bem sucedido de caso de endoftalmite endógena bilateral presumida por Candida pós pancreatite

Ricardo Evangelista Marrocos de Aragão¹, Ieda Maria Alexandre Barreira², Francisco Holanda Oliveira Neto¹, Felipe de Freitas Beserra¹, Cesar Pereira de Araujo¹, Carine Soares Ramos do Nascimento¹

ABSTRACT

Endogenous endophthalmitis is a rare, and frequently devastating, ophthalmic disease. It occurs mostly in immunocompromised patients, or those with diabetes mellitus, cancer or intravenous drugs users. Candida infection is the most common cause of endogenous endophthalmitis. Ocular candidiasis develops within days to weeks of fungemia. The association of treatment for pancreatitis with endophthalmitis is unusual. Treatment with broad-spectrum antibiotics and total parenteral nutrition may explain endogenous endophthalmitis. We report the case of a patient with pancreatitis treated with broad-spectrum antibiotics and total parenteral nutrition who developed bilateral presumed Candida endogenous endophthalmitis that was successfully treated with vitrectomy and intravitreal amphotericin B.

Keywords: Amphotericin B/therapeutic use; Candida; Endophthalmitis; Pancreatitis; Uveitis

RESUMO

Endoftalmite endógena é uma condição oftalmológica rara e frequentemente devastadora. Ocorre principalmente em pacientes imunocomprometidos, diabéticos, com neoplasias ou usuários de drogas intravenosas. Infeção por Candida é a causa mais comum de endoftalmite endógena. A candidíase ocular ocorre de dias a semanas após a fungemia. A associação de endoftalmite e o tratamento para pancreatite é rara. O tratamento com antibióticos de amplo espectro e alimentação parenteral total podem explicar uma endoftalmite endógena. Neste estudo, reportamos o caso de um paciente com pancreatite tratado com antibióticos de amplo espectro e alimentação parenteral total que desenvolveu endoftalmite endógena bilateral presumida por Candida que foi tratado com sucesso com vitrectomia e injeção intravitrea de amfotericina B.

Descritores: Amfotericina B/uso terapêutico; Candida; Endoftalmite; Pancreatite; Uveite

¹Serviço de Oftalmologia do Hospital Universitário Walter Cantidio da Universidade Federal do Ceará, Fortaleza (CE), Brasil. ²Centro Integrado de Diabetes e Hipertensão do Estado do Ceará, Fortaleza (CE), Brasil.

The authors declare no conflicts of interests.

Received for publication 26/12/2014 - Accepted for publication 11/07/2015

INTRODUCTION

Endogenous fungal endophthalmitis (EFE) is a rare, sight-threatening, and frequently devastating condition caused commonly by Candida species through hematogenous dissemination and usually occurs in patients with chronic diseases such as diabetes mellitus, systemic malignancy, extensive gastrointestinal surgery, or patients under systemic immunomodulatory therapy and chemotherapy. It develops within three days and involves at least two weeks of fungemia. Endogenous fungal endophthalmitis (EFE) develops slowly in focal or multifocal areas of chorioretinitis. Either granulomatous or nongranulomatous inflammation is observed with keratic precipitates, hypopyon, and vitritis with cellular aggregates. We report a case of bilateral endogenous endophthalmitis secondary to pancreatitis. The patient was managed successfully with vitrectomy, intravenous, and intravitreal administration of amphotericin B.

CASE REPORT

A 35-year-old man requested medical care as a result of a three-week history of blurred vision, floaters, pain and conjunctival injection in both eyes (OU). Tracing his history, he had been treated for pancreatitis over a two-month period. He had an indwelling double lumen subclavian catheter and was receiving broad-spectrum antibiotics and parenteral nutrition during his hospitalization time. He had no ocular history of disease, trauma or prior surgeries.

On ophthalmic examination, the best-corrected visual acuity was 20/60 in the right eye and 20/40 in the left. Intraocular pressure (IOP) as measured by a Goldmann applanation tonometer was 19mmHg in the right eye and 15mmHg in the left. On the slit-lamp examination light conjuntival hyperemia was observed, with anterior chamber cells +2 in the right eye and +1 in the left. Vitreal inflammatory cells was also observed, 1+ in the right and +0.5 in the left. Fundus examination revealed no signs of inflammation. Fluorescein angiogram showed small areas of hyperfluorescence in the macula of both eyes (Figures 1 and 2).

The patient was managed with corticosteroids topically and systemically. Two weeks later the BCVA dropped to counting fingers at 0.5m in the right eye and hand motion in the left. Slit-lamp examination showed marked conjunctival hyperemia, corneal haziness, anterior chamber cells +4 in the right eye and +3 in the left, a small hypopyon was observed in OU. The fundus evaluation revealed multiple cotton-ball opacities in the vitreous and some had coalesced to a “string of beads” appearance and a clear view of the retina was not possible due to intense vitreous inflammation in OU. The clinical scene was typical of endogenous endophthalmitis most probably due to Candida species. An ultrasound B-scan was performed (Figures 3 and 4). It showed dispersed opacities within the vitreous cavity and posterior vitreous detachment in both eyes.

A 23-gauge pars plana vitrectomy was performed (AccurusÒ; Alcon, Irvine, CA) and intravitreal amphotericin-B was administered at the end of the procedure. Procedures were performed first in the left eye and, a week later, in the right eye. Intraocular and vitreous cultures were negative, as was blood culture. Based on the clinical features, 200mg of oral fluconazole per day was initiated promptly and it was continued for two months.

Within a week of the vitrectomy procedures, the patient’s BCVA improved to 20/80 in the right eye and 20/60 in the left eye and the media started clearing. Discrete chorioretinitis patches were observed on fundus examination. After three weeks, the media cleared completely, and the BCVA reached 20/60 and 20/50 in the right and left eyes respectively.

DISCUSSION

Endogenous fungal endophthalmitis (EFE) is a rare form of endophthalmitis that occurs when pathogens spread across the blood and cause intraocular infection, a blood borne spread of the microorganism to the eye. It accounts for less than 10% of all forms of endophthalmitis. Immunocompromised patients are most
at risk for developing EFE. Diabetes mellitus, systemic malignance,
sickle cell anaemia, systemic lupus eritematosus, and human
immunodeficiency virus (HIV) infection are predisposing
conditions.(3) EFE is further distinguished from exogenous
endophthalmitis by occurring most in immunocompromised
patients, patients receiving chemotherapy or total parenteral
nutrition, or intravenous drugs abusers, and prolonged usage of
indwelling catheters and antibiotics.(4,5) Since endogenous
endophthalmitis represents a metastasis from a distant focus of
infection, one must consider the possibility of urinary tract infection,
pneumonia, bacterial meningitis, or a liver abscess as possible sources
of infection. (6,7) It can occur at any age, and in either sex. Historically,
it has carried a poor prognosis for visual recovery. (8,9) EFE are most
commonly due to Candida, Aspergillus, and Coccidioides.(6) EFE
develops slowly as focal or multifocal areas of chorioretinitis. Either
granulomatous or non-granulomatous inflammation is observed
with anterior chamber inflammation manifested by the presence of
a hypopyon, keratic precipitates, and vitritis with cellular aggregates.
(13) The infection usually begins in the choroid, and can break through
the Bruch membrane, form subretinal abscess, and secondarily into
the retina and vitreous. Typically, multiple, bilateral, white, well-
circumscribed lesions, with overlying vitreous inflammation, characterize
Candida chorioretinitis while vascular sheathing and intraretinal haemorrhages may be associated. The vitreous exudates
display a typical “string-of-pearls” appearance. Patients complain
of eye pain, and may have blurred vision or spots in their fields of
vision. Patients with EFE may have a positive blood culture, prior
eye symptoms or signs. Candida endophthalmitis occurs in up to
37% of patients with candidemia if not in antifungal therapy.(10) It is
not known why the eye is a common end organ target of fungemia.
Candida albicans is believed to have a tropism for the eye.(10) The
pathogenesis of candidemia remains unknown but is likely
multifactorial, including the use of broad-spectrum antibiotics, the presence of central venous catheters, administration of total
parenteral nutrition, abdominal surgery, neutropenia, and conditions
discussed previously. The differential diagnosis of Candida
endophthalmitis includes toxoplastic retinochoroiditis, which
exhibits posterior pole lesions that can appear yellow-white with
fluffy borders and range in size from small cotton-wool spots to the
width of several discs in diameter.

Cotmegagovirus retinitis, coccidiodomycotic choroiditis and
dendophthalmitis are caused by others fungi such as Aspergillus, Cryptococcus, endogenous endophthalmitis.(1) Candida vitreous
snowball lesions may also resemble parsplanitis.(11) In most cases, the
diagnosis of ocular candidiasis is mainly dependent on the typical
ocular clinical appearance with anterior chamber inflammation,
chorioretinal lesions distributed throughout the postequatorial fundus
and vitreous exudates, typically with the appearance of a “strings-of-
pearls”. (11) The classic treatment of EFE is antifungal agents
systemically and locally. Because the eye is a protected compartment,
penetration of systemically administered antifungal agents is highly
variable. In the posterior segment of the eye, amphotericin B achieves
very poor concentrations, while fluconazole contractions are high.
Among newer antifungal agents, voriconazole shows the most
promise, because therapeutic concentrations for most Candida and
Aspergillus species are achieved in the vitreal and broad antifungal
activity. (12,13) Vitrectomy is recommended for sight-threatening
endophthalmitis.(14,15) Sampling the vitreous at the time of vitrectomy
provides important culture data to guide treatment, although the
culture may be negative in some cases. Removing localized areas of
infection that would not respond to systemic antifungal agents
decreases the overall burden of organism. The vitrectomy is usually
combined with administration of intravitreal fungal agents.(16) A team
approach involving both ophthalmology and infectious disease is
essential to the success of treatment and preservation of visual acuity.

In this report our patient was diagnosed with bilateral
endogenous endophthalmitis secondary to pancreatitis. In a
review no association with the treatment of pancreatitis and
endophthalmitis was found. Pancreatitis is related with sudden
vision loss due to Purtscher-like retinopathy.(17-19) Our patient was treated with broad-spectrum antibiotics and
received total parenteral nutrition that may explain the endogenous endophthalmitis.

REFERENCES

1. Mookhey RS, Rao PK, Read RW, Van Gelder RN, Vitale AT,
 Bodaghi B, Parrish CM. Basic and Clinical Science Course. In-
2. Wu ZH, Chan RP, Luk FO, Liu DT, Chan CK, Lam DS et al.
 Review of clinical features, microbiological spectrum, and treat-
3. Step Klotz SA, Penn CC, Negvesky GJ, Butrus SI. Fungal and
4. Chang TS, Chen WC, Chen HS, Lee HW. Endogenous Candida
 endophthalmitis after two consecutive procedures of suction di-
5. Kim SJ, Seo SW, Park JM, Chung IY. Bilateral endophthalmitis as
 M, et al. Endogenous endophthalmitis: 10-year experience at a
8. Blázquez EP. Fondo de ojo en el paciente crítico no neutropénico:
9. Riddell J 4th, Comer GM, Kaufman CA. Treatment of endog-
 enous fungal endophthalmitis: focus on new antifungal agents.
11. López-Tizón E, Reinoso-Montalvo C, Mencía-Gutiérrez E,
 Gutiérrez-Díaz E. [Acute pancreatitis presenting as sudden blind-

Corresponding author:
Ricardo Evangelista Marrocos de Aragão
Hospital Universitário Walter Cantidio, Universidade Federal do
Ceará, Fortaleza (CE), Brazil.
E-mail: ricardomarrocos@yahoo.com

ERRATA

No artigo “Successful management of bilateral presumed
Candida endogenous endophthalmitis following pancreatitis”
dos autores: Ricardo Evangelista Marrocos de Aragão, Ieda Maria
Alexandre Barreira, Francisco Holanda Oliveira Neto,1,2
Carine Soares Ramos do Nascimento,1,2 com número de DOI 10.5935/
0034-7280.20160047, publicado na Revista Brasileira de Of-
talmologia, volume 75, número 3, maio-junho 2016 (Rev. Bras.
Oftalmol. 2016; 75 (3):228-30), página 228, na página 228:

Onze se lia:
Setor de Patologia Oficial. Banco de Olhos, Hospital
Geral de Fortaleza, Fortaleza (CE), Brasil.
†Hosptial Geral de Fortaleza, Fortaleza (CE), Brasil; Fun-
dação de Ciência e Pesquisa Maria Ione Xerez Vasconcelos;
Fortaleza (CE), Brasil.

Leia-se:
Servio de Oftalmologia do Hospital Universitário
Walter Cantidio da Universidade Federal do Ceará, Fortale-
za (CE), Brasil.
‡Centro Integrado de Diabetes e Hipertensão do Esta-
do do Ceará, Fortaleza (CE), Brasil.