The periosteal graft and flap use in Ophthalmology

O uso de enxerto e retalho de períósteo em Oftalmologia

Felipe Baccega1 https://orcid.org/0000-0003-2532-9921
Suzana Matayoshi2 https://orcid.org/0000-0003-0630-4091
Maria Antonieta da Anunciação Ginguerra Nascimento3 https://orcid.org/0000-0001-5886-0212

ABSTRACT

Purpose: The authors reviewed the periosteum use in ophthalmic surgery and its results. Methods: A comprehensive review of the literature using Google Scholar, PubMed and SciElo databases with all articles about the periosteum use in Ophthalmology published from 1977 to 2018. Results: A total of 21 studies followed the review’s purpose: 9 case reports, 9 case series, 1 retrospective cohort and 2 prospective cohorts. 206 patients were submitted to the procedures with the periosteum use in the two main forms: graft and flap. The principal reasons for periosteal use were: orbital implant covering and eyelid reconstruction. Surgical outcomes were very satisfactory with low complication rates of 10.67% and minimal necessity of new surgical intervention of 2.42%. Conclusion: The periosteum use in Ophthalmology is a promising technique with good results so far and should always be a therapeutic option for the ophthalmologist. However, based on available data in the literature, more studies with statistical power for knowledge sedimentation in this subject are recommended.

Keywords: Free tissue flaps; Periosteum; Ophthalmologic surgical procedures

RESUMO

Objetivo: Os autores revisaram o uso de períósteo em cirurgias oftalmológicas e seus resultados. Métodos: Uma revisão de literatura usando os bancos de dados do Google Scholar, PubMed e SciElo com todos os artigos sobre o uso de períósteo em Oftalmologia publicados de 1977 até 2018. Resultados: Um total de 21 estudos cumpriram o objetivo do estudo: 9 relatos de caso, 9 séries de casos, 1 coorte retrospectiva e 2 coortes prospectivas. 206 pacientes foram submetidos aos procedimentos cirúrgicos com uso de períósteo nas duas formas principais: enxerto e retalho. Os principais motivos para uso do períósteo foram: recobrimento de implante orbital e reconstrução palpebral. Resultados cirúrgicos foram satisfatórios com baixas taxas de complicação de 10.67% e mínima necessidade de nova intervenção cirúrgica de 2.42%. Conclusão: O uso de períósteo em Oftalmologia é uma técnica promissora com bons resultados até o momento e deve sempre ser uma opção terapêutica para o Oftalmologista. Todavia, mais estudos com poder estatístico para sedimentação do conhecimento sobre o tema são recomendados.

Descritores: Retalhos de tecido biológico; Periósteo; Procedimentos cirúrgicos oftalmológicos

1. School of Medicine, Universidade de São Paulo, São Paulo, SP, Brazil.
2. Ophthalmology Discipline, School of Medicine, Universidade de São Paulo, São Paulo, SP, Brazil.
3. Service of Ocular Plastic Surgery, School of Medicine, Universidade de São Paulo, São Paulo, SP, Brazil.

The authors declare no conflicts of interests.

Received for publication 21/08/2018 - Accepted for publication 28/11/2018.

Rev Bras Oftalmol. 2019; 78 (2): 144-9

The periodical Revista Brasileira de Oftalmologia is licensed under a Creative Commons CC-BY License
INTRODUCTION

The use of periosteum for craniofacial reconstruction is a technique already sedimented. Its use in Ophthalmology appears in reports of 1977 when Rao et al. used periosteal graft for scleral reinforcement in scleromalacia. In addition, the periosteum has been currently used in the art for other functions as: reconstruction of the orbital cavity, palpebral reconstruction, covering of orbital implants, of scleral buckle, and even of corneal ulcers.

Literature describes its use in two ways: it can be used as a graft when removed from its donor site without a vascular pedicle, or as a flap when it maintains its vascularization. In the first case, we make use of its capacity to support, structure and cover the surface, and in the second case there is also the advantage of providing blood supply to stimulate the integration of tissues and fight infections. In addition, it may be used alone or in combination with other tissues such as myoperiosteal and mucoperiosteal flaps.

The periosteum donor area varies depending on criteria such as the experience of the surgical team, the location of the surgical site, the amount of periosteum required, and the availability of adequate surgical material. The main donor areas for the ophthalmologic procedures published are anterior tibial, palate, mastoid, eye socket, pericranium, and nasal bone.

In all descriptions published, autologous periosteum is used with the inherent benefits such as less time for vascularization and integration, and less inflammatory response when compared to heterologous tissues, besides not causing sensitization of the host.

ANATOMY

The periosteum is a fibrovascular tissue covering the outer bone surface of most human bones, except for joint surfaces, tendon insertions, and sesamoid bones.

It is attached to the bone tissue by collagen fibers, and can reach 2-3mm thick in the diaphyses of long bones where it is more easily detachable. In the bone metaphysis and epiphysis the periosteum is thinner and more adhered to the underlying bone tissue.

From the mechanical point of view, the periosteum in children is stronger and thicker, and with age it becomes thinner and less resistant or elastic.

HISTOLOGY

From the histological point of view, it is a subaponeurotic loose connective tissue well vascularized, in close contact with the bone cortex, and comprises multipotent cells of the mesoderm with the capacity of differentiation in several types of connective tissue depending on its microenvironment, such as bone and cartilage tissue.

It can be divided into 2 layers:

- **Cambium**: thin inner cell layer with the presence of osteoblasts and osteoprogenitor cells with cellular proliferation and differentiation capacity.
- **External layer** with abundant presence of collagen fibers and reticular fibers to bring elasticity and resistance to the tissue.

SURGICAL TECHNIQUE

The surgical technique for collecting periosteum generally comprises the following steps: dissection by planes until periosteal surface exposure, delimitation of periosteal extraction area with scalpel or with thin tip monopolar electrocautery to the bone plane, periosteal detachment of the bone surface with a periosteal elevator, mobilization and collection of the periosteum isolated, local hemostasis, closure of the surgical site by planes.

During the periosteum delimitation and detachment step, the reduced thickness and friability of the tissue requires the step to be carried out carefully, and the use of a magnifying glass is recommended.

The periosteal tissue collected must be maintained in saline solution to avoid drying until its use, and its fixation is done with sutures.

For the preparation of periosteal flaps, it is necessary to know the vascularization of the specific region of the surgical site approached in order to preserve the vascular pedicle.

For access to the frontal periosteum, the main access routes used are the upper eyelid via the palpebral sulcus and coronal incision. The dissection plane should be subgaleal, and the smallest area of galeal dissection should be performed in order to preserve the perforating vessels. Other access routes to the frontal region are through a medial and paramedial vertical incision behind the capillary implantation line when the endoscopic technique is used.

The parietal periosteum can be accessed through a median incision in the 4-cm parietal region. Access is safer than the other typical access routes as it approaches terminal irrigation and vascularization routes with fewer collaterals, besides providing a broad area for collection of periosteum.

The main complications presented by the donor region are local pain, swelling, scarring that are sometimes visible, chance of local sensitivity alteration by nerve injury, and potential risk of local infection.

Figure 1: Incision in the midline of the parietal region

Figure 2: Periosteum graft
A research on the use of periosteum in Ophthalmology was carried out using the Google Scholar, PubMed and SciElo databases, with articles published from 1977 to 2018. The keywords used for the research were periostium, pericranium, periosteal graft, periosteal flap, eye, ophthalmology, orbit, socket.

Selection of studies

The review included case reports, case series with up to 21 individuals, retrospective cohorts with up to 5 individuals, and prospective cohorts with 58 individuals.

Data extraction

Data collected included the use of periosteum alone, use of composite periosteum, use of graft, use of flap, periosteal removal site, periosteal destination, success in the technique described, complications presented.

Results

We found 21 studies following the selection criteria: 9 studies were case reports, 9 case series, 1 retrospective cohort, 2 prospective cohort (Table 1).

The studies available evaluated the total of 206 patients submitted to the ophthalmologic use of periosteum.

Table 1

<table>
<thead>
<tr>
<th>Author</th>
<th>Year</th>
<th>Paper</th>
</tr>
</thead>
<tbody>
<tr>
<td>Rao et al.</td>
<td>1977</td>
<td>Periostium graft in scleralalacia</td>
</tr>
<tr>
<td>Caroll et al.</td>
<td>1979</td>
<td>Bone formation in a periostium graft</td>
</tr>
<tr>
<td>Wolfe SA</td>
<td>1979</td>
<td>Correction of a persistent lower eyelid deformity caused by a displaced orbital floor implant</td>
</tr>
<tr>
<td>Koenig et al.</td>
<td>1983</td>
<td>The treatment of Necrotizing Scleritis with an autogenous periostium Graft</td>
</tr>
<tr>
<td>Horowitz et al.</td>
<td>1984</td>
<td>Galeal-Pericranial flaps in head and neck reconstruction: anatomy and application</td>
</tr>
<tr>
<td>Hurwitz et al.</td>
<td>1989</td>
<td>The use of free periostium flaps in extensive lower lid reconstruction</td>
</tr>
<tr>
<td>Portnoy et al.</td>
<td>1989</td>
<td>Surgical Management of Corneal Ucleration and Perforation</td>
</tr>
<tr>
<td>Dingeldein et al.</td>
<td>1990</td>
<td>Mooren's ulcer treated with periostium graft</td>
</tr>
<tr>
<td>Yoshimura et al.</td>
<td>1995</td>
<td>Use of palatal mucosal graft for reconstruction of the eye socket</td>
</tr>
<tr>
<td>Beaver et al.</td>
<td>1996</td>
<td>Periocular Autografts in Socket Reconstruction</td>
</tr>
<tr>
<td>Glatt HJ</td>
<td>1997</td>
<td>Tarsocconjunctival flap suplementation: an approach to the reconstruction of large lower eyelid defects</td>
</tr>
<tr>
<td>Tse et al.</td>
<td>1997</td>
<td>Use of galeal or pericranial flaps for reconstruction of orbital and eyelid defects</td>
</tr>
<tr>
<td>Massry et al.</td>
<td>1999</td>
<td>Frontal periostium as an exposed orbital implant cover</td>
</tr>
<tr>
<td>Liao et al.</td>
<td>2005</td>
<td>Surgical Coverage of exposed hydroxyapatite implant with retroauricular myoperiostium graft</td>
</tr>
<tr>
<td>Leatherbarrow et al.</td>
<td>2006</td>
<td>Use of the Pericranial flap in Medial Canthal Reconstruction: another application for this versatile flap</td>
</tr>
<tr>
<td>Rajabi et al.</td>
<td>2012</td>
<td>Total lower lid reconstruction: clinical outcomes of utilizing three-layer flap and graft in one session</td>
</tr>
<tr>
<td>Okumoto et al.</td>
<td>2013</td>
<td>Secondary reconstruction of a mobile eye socket 30 years after enucleation of the eyeball for retinoblastoma: a case report</td>
</tr>
<tr>
<td>Cardim et al.</td>
<td>2013</td>
<td>Canthopexy and tarsal reinforcement using a periostium flap</td>
</tr>
<tr>
<td>Gupta et al.</td>
<td>2014</td>
<td>Salvaging recurrent scleral buckle exposure with autologous periostium patch graft</td>
</tr>
<tr>
<td>Ibáñez-Flores et al.</td>
<td>2015</td>
<td>Pericranium grafts for exposed orbital implants: An observational case-series study</td>
</tr>
<tr>
<td>Rajabi et al.</td>
<td>2016</td>
<td>A novel technique for full thickness medial canthal reconstruction; playing with broken lines</td>
</tr>
<tr>
<td>Samira et al.</td>
<td>2016</td>
<td>Rare case of bilateral perforated corneal ulcer due to gonococcal infection, managed with temporary periostium graft</td>
</tr>
</tbody>
</table>
The periosteal graft and flap use in Ophthalmology

Periodosteal graft

A total of 47 patients (Table 2) were treated using periosteal graft. Of these, 3 patients underwent scleral covering, 1 patient underwent an keratoprosthesis covering, 1 patient underwent a scleral buckle covering, 2 patients underwent corneal ulcer covering, 1 patient underwent posterior lamella reconstruction, 3 patients underwent reconstruction of the orbital cavity, and 36 patients underwent exposed orbital implants covering.

The complications reported were bone formation (2.12%), granuloma (4.25%), recurrent exposure (10.63%).

<table>
<thead>
<tr>
<th>Table 2</th>
<th>Use of periosteal graft</th>
</tr>
</thead>
<tbody>
<tr>
<td>Removal site</td>
<td>Use destination</td>
</tr>
<tr>
<td>Anterior tibial</td>
<td>Scleral covering</td>
</tr>
<tr>
<td>Anterior tibial</td>
<td>Keratoprosthesis extrusion</td>
</tr>
<tr>
<td>Anterior tibial</td>
<td>Scleral covering</td>
</tr>
<tr>
<td>Palate</td>
<td>Palpebral Reconstruction</td>
</tr>
<tr>
<td>Palate</td>
<td>Corneal ulcer</td>
</tr>
<tr>
<td>Eye socket</td>
<td>Implant covering</td>
</tr>
<tr>
<td>Frontal</td>
<td>Implant covering</td>
</tr>
<tr>
<td>Retrauraicular</td>
<td>Implant covering</td>
</tr>
<tr>
<td>Pericranium</td>
<td>Exposed orbital implants</td>
</tr>
</tbody>
</table>

Total = 47

Periosteal flap

A total of 159 patients (Table 3) were treated using a periosteal flap. Of these, 58 were submitted to a flap of nasal bone for reconstruction of the posterior palpebral lamella, 25 were submitted to pericranial flap for palpebral reconstruction, 75 patients were submitted to lateral eye socket flap for posterior lamella reconstruction, and 1 patient was submitted to pericranial flap for orbit reconstruction.

The complications reported were partial correction of the defect (2.51%), infection (0.62%), partial (3.14%) and total (0.62%) ischemia of the flap, ectropion (1.25%), and palpebral ptosis (0.62%).

<table>
<thead>
<tr>
<th>Table 3</th>
<th>Use of periosteal flap</th>
</tr>
</thead>
<tbody>
<tr>
<td>Removal site</td>
<td>Use destination</td>
</tr>
<tr>
<td>Pericranium</td>
<td>Orbital reconstruction</td>
</tr>
<tr>
<td>Eye socket</td>
<td>Palpebral Reconstruction</td>
</tr>
<tr>
<td>Nasal bone</td>
<td>Palpebral Reconstruction</td>
</tr>
<tr>
<td>Pericranium</td>
<td>Palpebral Reconstruction</td>
</tr>
</tbody>
</table>

Total = 159

Pericranium

A total of 48 patients (Table 4) were treated with periostium from Pericranium (including frontal periostium). Of these, 22 cases were collected as graft for orbital implant covering, and 26 cases were collected as flap for orbital cavity reconstruction and palpebral reconstruction.

The success of surgical intervention using a pericranial graft was 86.36%, showing only 2 cases of recurrent implant exposure, and 1 case with local granuloma formation.

The success of surgical intervention using pericranial flap was 61.53%, with 1 case evolving with palpebral ptosis, 2 cases with ectropion, 1 case with local infection, 5 cases of partial ischemia, and 1 case of total ischemia.

<table>
<thead>
<tr>
<th>Table 4</th>
<th>Use of pericranium</th>
</tr>
</thead>
<tbody>
<tr>
<td>Removal site</td>
<td>Use destination</td>
</tr>
<tr>
<td>Pericranium</td>
<td>Orbital reconstruction</td>
</tr>
<tr>
<td>Eye socket</td>
<td>Palpebral Reconstruction</td>
</tr>
<tr>
<td>Nasal bone</td>
<td>Palpebral Reconstruction</td>
</tr>
<tr>
<td>Pericranium</td>
<td>Palpebral Reconstruction</td>
</tr>
</tbody>
</table>

Total = 48

Discusssion

The use of periostium in Ophthalmology is for the most part in Oculoplastics for orbit and eyelid reconstruction, and for the covering of exposed orbital implants, where we can find most of the publications on the subject. However, its initial use from the chronological point of view was designed to cover the ocular surface in cases of scleral tissue replacement such as cases of scleromalacia and necrotizing scleritis.

In all cases reported in the literature, the use of periostial tissue presented satisfactory results with low complication rates (10.67%) and a minimum number of complications requiring new surgical intervention or patient dissatisfaction with the final result.
When assessing the contraction (2.42%). It is necessary to consider that part of the complications presented may be related to the technique used and not to the material being evaluated since there are no adequate comparative studies to date.

Koenig et al. report a series of cases of periosteal graft use for enhancing the scleral wall in necrotizing scleritis, and relate more satisfactory use of periosteum compared to the donor sclera due to its smaller thickness and greater flexibility of the tissue. These characteristics of periosteal graft allowed the group of Okumoto et al. to use the periosteal graft to cover a cartilage sphere collected from the costal region and used as an orbital implant.

Although it is not the gold standard treatment, the use of periosteum is also described in the literature for corneal covering both in cases of sterile corneal ulcers and in Mooren’s ulcer, as well as gonococcal keratitis with ocular perforation.

Liao et al. and Gupta et al. published a series of cases in which they successfully used retroauricular myoperiosteal graft to cover orbital and scleral buckle implants, and emphasize that the periosteum was shown as a more robust option than the sclera or dermoadiposal graft.

The effect of primary and secondary contraction observed in the technique of collection and cicatrization of biological grafts and flaps is of great importance for adequate surgical planning. Skin grafts show a primary contraction of about 9-22% depending on factors such as thickness and amount of elastin, and a final contraction of 40-45%.

When assessing the contraction presented using periosteum, no study objectively evaluates these criteria. The group of Yoshimura et al. reports that in their experience the use of periosteal graft may present a contraction of up to 30% in the recent postoperative period, but that decreases between the second and third month after surgery to 10-20% of the initial size used.

Massry et al. describe that periosteal grafts up to 25mm in diameter can be collected from the frontal bone through an incision performed in the palpebral groove safely, whereas Guyot et al. describe a technique for the collection of mucoperiosteal graft of the palate under local anesthesia allowing the collection of grafts of up to 40x20mm for idealized use in palpebral reconstruction.

Of all periosteal extraction areas presented in review, pericranium is shown as a more advantageous option by offering a large area for collection, direct access, rich vascularization with multiple anastomoses, minimal probability of nerve damage, and possibility of hiding the surgical scar in the scalp.

Retrospective analysis shows that the use of autologous tissues such as periosteum presents better final results when compared to the use of homologous tissues for the orbital implant covering.

The pericranial flap has excellent blood supply allowing the support of other adjacent grafts in reconstructive surgeries such as skin, bone and cartilage. In addition, it can be used in regions with exposure to air swirling as in reconstruction of orbital fistulas with nasal sinus.

The main advantages of using periosteum are:
- The use of an autologous tissue of fast access and availability inducing a lower inflammatory response, early revascularization, and not inducing sensitization with donor tissue;
- Greater tissue bank independence and lower infectious risk;
- Satisfactory support and structuring ability when used for orbital and palpebral reconstruction;
- Good results when used for orbital and buckle implant covering;
- Adequate resistance, malleability and thickness for scleral wall reinforcement;
- Possibility of use for covering of corneal ulcers;
- Possibility of using tissue flap with blood supply, and support of neighboring tissues with poor circulation.

The main disadvantages of using periosteum are:
- Learning curve technique for removal of periosteal tissue from different possible regions, often not with great familiarity with ophthalmologist surgeons;
- Need for exploration of possible second surgical site for tissue collection;
- Theoretical increase in the risk of sympathetic ophthalmia, not shown by the studies.

Limitations of the study

The use of periosteum in ophthalmology is shown in the literature with great potential of use and versatility. However, two important points limit the consolidation of knowledge: few studies published in the area of knowledge recently, being subject to a bias of temporality in data analysis, and lack of studies with greater analytical power, with most of the studies analyzed being reports and series of cases.

CONCLUSION

The use of Periosteum in Ophthalmology is promising, with satisfactory results published so far, and should always be a therapeutic option to be considered by the Ophthalmologist for their patient. However, there is a need for further studies on the case, especially comparative clinical trials to better sediment the knowledge on the subject.

REFERENCES

Corresponding author:
Felipe Baccega
Rua Oscar Freire, 175B. Apto 114B
Phone: (11)985354218
E-mail: felipebaccega@gmail.com