Cerebellopontine angle cavernous hemangioma

Keywords: cerebellopontine angle, differential diagnosis, cavernous hemangioma.

INTRODUCTION

Cavernous hemangioma, also known as cavernous angioma, accounts for 10-20% of vascular malformations. Extra-axial lesions are rare. Most tumors are found in the sinuses, Meckel’s cavity, posterior fossa, including the cerebellar- pontine angle and internal auditory meatus. This paper reports the clinical case of a patient with cavernous hemangioma involving the internal auditory meatus whose initial diagnosis was vestibular schwannoma.

CASE REPORT


No changes were found in the cranial CT scan, both with and without enhancement. Skull MRI images showed a 1.2x0.8 cm lobular structure expanding the right-side internal auditory meatus with a minor cisternal component, characterized by intermediate-level signal on T1, hypersignaling on T2 and impregnation by paramagnetic agent. (Figure 1)

The patient was submitted to a translabyrinthine approach on April 14, 2004. The procedure had to be aborted due to intense intra-op bleeding when opening the dura. The patient was reoperated on April 16, 2004. This time the suboccipital approach was chosen and the tumor was removed.

The pathologist’s report identified cavernous angioma with recent thrombosis.

DISCUSSION

In this case report a patient with cavernous hemangioma in the internal auditory meatus came to our service complaining of auditory loss accompanied by humming and sporadic dizzy spells when turning to the left in episodes that lasted for less than a minute, usually followed by nausea and often accompanied by louder humming and hearing loss.

Audiometric tests pinpointed deep right-ear sensorineural hearing loss and mild left-ear hearing loss. Neuro-otologic tests suggested right-side vestibular deficit syndrome.

No changes were found in the cranial CT scan, both with and without enhancement. Skull MRI images showed a 1.2x0.8 cm lobular structure expanding the right-side internal auditory meatus with a minor cisternal component, characterized by intermediate-level signal on T1, hypersignaling on T2 and impregnation by paramagnetic agent. (Figure 1)

The patient was submitted to a translabyrinthine approach on April 14, 2004. The procedure had to be aborted due to intense intra-op bleeding when opening the dura. The patient was reoperated on April 16, 2004. This time the suboccipital approach was chosen and the tumor was removed.

The pathologist’s report identified cavernous angioma with recent thrombosis.

CONCLUSION

Cavernous hemangiomas in the internal auditory meatus are rare and may be characterized by unilateral sensorineural auditory deficiency. MRI is the technique of choice to achieve differential diagnosis. Final diagnosis can only be reached after pathology exam.

REFERENCES