Genetics of autism
Genética do autismo

Gianna Carvalheira, a Naja Vergani b and Décio Brunoni a,b,c

Original version accepted in Portuguese

Abstract
Autism is a neuropsychiatric disorder with profound family and social consequences. An extraordinary number of genetic-clinical, cytogenetics and molecular studies were done in recent years. A multi-loci epistatic model involved in the causation of autism have emerged from these studies.

Keywords: Autistic disorder/genetic; Chromosome disorders; Chromosome aberrations; Developmental disabilities; Genes.

Resumo
O autismo é uma doença neuropsiquiátrica com profundas conseqüências sociofamiliares. Inúmeros trabalhos investigaram pacientes e famílias com metodologia genético-clínica, citogenética e biologia molecular. Os resultados destes trabalhos apontam para um modelo multiloci com interação epistática associado à etiologia do autismo.

Descritores: Transtorno autístico/genética; Transtornos cromossômicos; Aberrações cromossômicas; Deficiências do desenvolvimento; Genes.

Introduction
For more than three decades, there has been crucial evidence that most psychiatric disorders, including schizophrenia, bipolar disorder and autism, have a strong genetic component. In the last 15 years, innumerable gene loci have been associated with these and other mental disorders, principally through genetic linkage analysis. However, only a few specific genes have been identified. Most of these genes can only be identified when literally hundreds of affected individuals and their relatives are analyzed. Promising new research techniques and methods have emerged that might further the investigation of the genetic and environmental causes of these disorders.

Advances in human genetics research have paved the way for increasing knowledge of the biological pathways of cognitive and affective disorders, as well as of certain types of psychoses. Due to the great difficulty in comprehending alterations in encephalic functions, understanding the physiopathology of the nervous system has become highly attractive. As previously mentioned, studies of families with one or more affected members, as well as twin and adoption studies, have shown that mental disorders such as autism have a strong genetic component. However, none of these diseases follow a Mendelian inheritance pattern. The autistic phenotype is broadly varied. Individuals with classic autism, lacking verbal communication and presenting severe mental deficiency, as well as autistic individuals presenting verbal abilities and normal intelligence, have been described. Developmental abnormalities are usually detected in the first three years of life and persist into adulthood. The Diagnostic and Statistical Manual of Mental Disorders and the International classification of diseases created the diagnostic category of Global Development Disorders and Pervasive Developmental Disorders (PDDs). In general, these are all designated as autism. The PDDs affect social interaction, communication and behavior and are highly prevalent, up to 5 cases per 1000 children, with a 4:1 male/female ratio.

The etiology of autism is still unknown. Hundreds of studies have been conducted in attempts to reveal the genetic factors associated with the disease. The neurobiological causes associated with autism, such as convulsions, mental deficiency, fewer neurons and synapses in the amygdala, hippocampus and cerebellum; encephalitis, and a higher concentration of circulating serotonin, suggest a strong genetic component. In fact, studies with twins have actually shown that the concordance with autism ranges from 36% to 92% in monozygotic (MZ) twins, whereas concordance is low or null in dizygotic (DZ) twins. However, when cognitive and social abnormalities are considered, the level of concordance rises to 92% among MZ twins and 10% among DZ twins. Another relevant fact is that, although the risk of autism recurrence is low (2%-8%), the relative risk is 50-200 times greater than the prevalence of the disorder in the general population.

It is believed that there are from 3 to more than 10 genes related to the disease. Furthermore, the autism spectrum can be found in practically all chromosome abnormalities. The 15q11-13 region, critical in the Prader-Willi/Angelman syndrome, shows alteration in 1% to 4% of autistic patients. Structural incoherencies in the 17p11.2 region, critical in the Smith-Magenis syndrome, have also been reported in autistic individuals. Likewise, patients with tuberous sclerosis, Rett syndrome, phenylketonuria, neurofibromatosis or autism-related fragile X syndrome form etiological subgroups. Approximately 30% of fragile X individuals present the autism spectrum. However, there is discordance on the degree of prevalence of fragile X in autism patients, ranging from 7%-8%.

The first extensive triage of the complete genome for chromosomal regions involved in classic autism found approximately 354 associated genetic markers, located in 8 regions of the following chromosomes: 2, 4, 7, 10, 13, 16, 19 and 22. However, later studies have shown that the 7q, 16p, 2q, 17q regions are the most significant. More recent studies have provided evidence of linkage with the X chromosome.
Genes identified in patients with autism, such as developmental
genes associated with the central nervous system,26-27 genes in
the serotonin system and in other systems regulating neuron
function, as well as genes located at chromosomal breakpoints,28
have arisen as candidate genes. In the 15q11-13 region, for
example, the cluster of the gamma-aminobutyric acid receptor
gene seems to be associated with autism pathogenesis.29,30 In
addition, expression of the UBE3A gene is predominant in the
human brain.31-33 However, since individuals with chromosomal
alterations in this region are not always autistic, it is believed that
the changes in these genes are not sufficient to induce development
of the disease. This hypothesis reinforces that of autism originating
from synergism or epistasis among multiple genes.

Most studies have focused on the 7q22-q33 region. In the
7q22 region, the RELN (previously reelin) gene, which encodes a
glycoprotein extensively secreted in neuronal migration, may
present alterations that affect cortical and cerebellar development.
In fact, abnormalities in cerebellar neurons are among the most
significant causes in the pathology of autism.34 Within this region,
there are at least another 9 candidate genes.35-37

In the X chromosome, the Xq22-q23 region, to which the
AGTR2 gene has been mapped, is held as important.38 Studies of
this gene have demonstrated that the deletion in this region is
associated with the high frequency of mental deficiency in autistic
individuals. However, the most significant region is Xq13-q21, which
contains one of the genes of the neuriligin family. The
neuroligins act as mediators of cell interaction (adshesion
molecules) between neurons possessing receptors for neurexin
in their plasmatic membranes. The neuroligins are found on the
post-synaptic side of the synapses39,40 and appear to be essential for
the efficient function of the same.37,38 Mutations in the NLGN3
and NLGN4 genes have been found in two families including
members affected by autism or Asperger’s syndrome, suggesting
that synaptic performance is affected.

Genes that encode proteins participating in the serotonin system
are also strong candidates for the study of autistic individuals.
Impaired function of this system may result in depression, epilepsy,
obsessive-compulsive behavior and affective disorders. In fact, some
of these genes, such as the serotonin transporter (5-HTT) and
serotonin receptor (5-HTR) genes, have been studied in affected
individuals. However, the relationship between the 5-HTT gene
and autism is still controversial.39-42 As for the 5-HTR genes, it has
been shown that autism is not associated with the 5-HTR2B and
5-HTR receptors,43 although a significant association was found
between autism and polymorphism in the 5-HTR2A receptor gene
in autistic individuals compared to controls.

Despite all the discordance regarding candidate genes for
autism, there are still good reasons to believe that, once the
genes involved are known, new therapeutic agents may act on
specific molecular targets. In the search for these genes, identifying
multiple quantitative phenotypes is fundamental to the selection
of some regions. For example, the results of a study involving 75
families, divided into subgroups based on the speech
characteristics of the subjects and their blood relatives, suggest that
chromosomes 7 and 13 are strongly associated with autism.45

The 2q region has also been associated with autism in other
populations with speech difficulties.46,47 Such studies suggest
that social and cognitive deficits are included in the broad
phenotypic spectrum of autism.48 Social deficits include loss of
emotional response, loss of empathy, hypersensitivity and singu-
lar preoccupation with a special interest. Communication deficits,
on the other hand, consist mainly of pragmatic communication
difficulties or other types of language problems. The amplification
of the phenotypic spectrum in autism may facilitate the
identification of genes involved in the disorder. Therefore,

multidisciplinary or consortium studies are the best hope for
gaining a better understanding of PDDs. Specific diagnostic tests
are still unavailable in clinical practice. A diagnosis of autism
should result from the creation of a detailed evolutive background
of the patient, as well as from family interviews regarding the
cognitive and behavioral abilities of the patient. Future clinical
investigations will confirm whether autism is associated with the
syndromes mentioned.

Sponsoring and conflict of interests: Inexistent
Received in 06.28.2004
Accepted in 06.28.2004

References
1. Cowan WM, Kopnisky KL, Hyman SE. The human genome project and
2. Lamb JA, Moore J, Bailey A, Monaco A. Autism: recent molecular
3. Smalley SL. Genetic influences in childhood-onset psychiatric disorders:
1997;60(6):1276-82. Review.
4. American Psychiatric Association - APA. Diagnostic and statistical
5. Organização Mundial de Saúde – OMS. Classificação estatística inter-
nacional de doenças e problemas relacionados à saúde: CID-10. 10ª
2004;113(5):e472-86. Review.
Rutter M. Autism as a strongly genetic disorder: evidence from a British
clinical, genetic, neuropsychological, and neurobiological perspectives.
Rutter M. Latent-class analysis of recurrence risks for complex phenotypes
with selection and measurement error: a twin and family history study of
a genomic screen of autism: evidence for a multis locus etiology. Am J Hum
15. Folstein SE, Rosen-Sheidley B. Genetics of autism: complex aetiology
Linkage-disequilibrium mapping of autistic disorder, with 15q11-13
17. Potocki L, Chen KS, Park SS, Osterholm DE, Whiters MA, Kimonis V,
et al. Molecular mechanism for duplication 17p11.2- the homozygous
high incidence of specific genetic syndromes in 21 autistic adolescents
19. Rogers SJ, Wehner DE, Hagerman R. The behavioral phenotype in
fragile X: symptoms of autism in very young children with fragile X syndrome,
Molecular and cytogenetic analyses on Brazilian youths with pervasive


