Metazoan endoparasites of *Pygocentrus nattereri* (Characiformes: Serrasalminae) in the Negro River, Pantanal, Brazil

Endoparasitas metazoários de *Pygocentrus nattereri* (Caraciformes: Serrasalminae) no rio Negro, Pantanal, Brasil

Wagner Vicentin*; Kelly Regina Ibarrola Vieira; Luiz Eduardo Roland Tavares; Fábio Edir dos Santos Costa; Ricardo Massato Takemoto; Fernando Paiva

1Programa de Pós-graduação em Ecologia e Conservação, Universidade Federal de Mato Grosso do Sul – UFMS, Campo Grande, MS, Brasil
2Centro de Ciências Biológicas e da Saúde, Universidade Federal de Mato Grosso do Sul – UFMS, Campo Grande, MS, Brasil
3Laboratório de Ictiologia, Centro de Pesquisas em Biodiversidade, Universidade Estadual de Mato Grosso do Sul – UEMS, Dourados, MS, Brasil
4Núcleo de Pesquisas em Limnologia, Ictiologia e Aquicultura – NUPÉLIA, Laboratório de Ictioparasitologia, Universidade Estadual de Maringá – UEM, Maringá, PR, Brasil

Received January 7, 2013
Accepted May 6, 2013

Abstract

In the period of October 2007 to August 2008, 152 specimens of *Pygocentrus nattereri* were caught in the Negro River in the Nhecolândia region, central Pantanal wetland, State of Mato Grosso do Sul, Brazil. The specimens were necropsied and a total of 4,212 metazoan endoparasites were recovered, belonging to 10 taxons: *Procamallanus* (*Spirocamallanus*) *inopinatus*, *Philometridae* gen. sp., *Eustrongylides* sp., *Brevimulticaecum* sp., *Contracaecum* sp. (Nematoda), *Echinorhynchus paranensis* (Acanthocephala), *Leiperia gracile*, *Sebekia oxycephala*, *Subtriquetra* sp. 1 and *Subtriquetra* sp. 2 (Pentastomida). This is the first record of two parasite species from *P. nattereri*: *E. paranensis* and *L. gracile*.

Keywords: *Pygocentrus nattereri*, *Echinorhynchus paranensis*, *Leiperia gracile*, helminths, freshwater fishes, piranhas.

Resumo

No período de outubro de 2007 a agosto de 2008, 152 espécimes de *Pygocentrus nattereri* foram capturados no rio Negro na região da Nhecolândia, parte central do Pantanal, Mato Grosso do Sul, Brasil. Os espécimes foram necropsiados e um total de 4.212 endoparasitas metazoários foram colhidos, pertencentes a 10 táxons: *Procamallanus* (*Spirocamallanus*) *inopinatus*, *Philometridae* gen. sp., *Eustrongylides* sp., *Brevimulticaecum* sp., *Contracaecum* sp. (Nematoda), *Echinorhynchus paranensis* (Acanthocephala), *Leiperia gracile*, *Sebekia oxycephala*, *Subtriquetra* sp. 1 e *Subtriquetra* sp. 2 (Pentastomida). Este é o primeiro registro de duas espécies de parasitas em *P. nattereri*: *E. paranensis* e *L. gracile*.

Palavras-chave: *Pygocentrus nattereri*, *Echinorhynchus paranensis*, *Leiperia gracile*, helmintos, peixes de água doce, piranhas.

Introduction

Pygocentrus nattereri Kner, 1858 is a gregarious and piscivorous species (SAZIMA; MACHADO, 1990). Its wide geographical distribution includes the tropical and neotropical regions of South America (Argentina, Bolivia, Brazil, Colombia, Ecuador, Guyana, Paraguay, Peru and Uruguay), mainly in the Amazon and Paraguay-Paraná river basins, coastal rivers in northeastern Brazil, and the Essequibo River basin (JÉGU, 2003).

Most information on its parasite fauna consists of records of 34 ectoparasite species (THATCHER, 2006; EIRAS et al., 2010). Only five described and five undescribed endoparasite species have been reported in *P. nattereri*: the nematodes *Eustrongylides ignotus* Jäegerskiold, 1909 larvae (MORAVEC, 1998), *Eustrongylides* sp. larvae (BARROS et al., 2010, EIRAS et al., 2010), *Contracaecum* sp. larvae (PAVANELLI et al., 2004), *Procamallanus* (S.)

*Corresponding author: Wagner Vicentin
Programa de Pós-graduação em Ecologia e Conservação, Universidade Federal de Mato Grosso do Sul - UFMS, CEP 79070-900, Campo Grande, MS, Brazil
e-mail: wagnervicentin.bio@gmail.com
inopinatus Travassos, Artigas & Pereira, 1928 (THATCHER, 2006), Brevimulticaecum sp. larvae (VIEIRA et al., 2010), Procamallanus sp. (BARROS et al., 2010), Philometra nattereri n. sp. (CÁRDENAS et al., 2012); the acanthocephalan Acanthocephala fam. gen. sp. (EIRAS et al., 2010); the cestode Proteocephalus serralimus Rego & PavANELLI, 1990 (REGO; PAVANELLI, 1990); and larvae of the pentastomids Leiperia sp. (EIRAS et al., 2010) and Sebekia oxycephala Sambon, 1922 (REGO; EIRAS, 1989).

Because of the lack of knowledge regarding the endoparasite fauna in this host, the aim of this study was to report and describe the species of metazoan endoparasites found in P. nattereri in the Negro River, Pantanal wetland, State of Mato Grosso do Sul, Brazil.

Materials and Methods

From October 2007 to August 2008, 152 specimens of P. nattereri were collected, pithed immediately after capture and preserved under refrigeration until the moment of necropsy. The necropsy, specimen collection, preparation and conservation of the endoparasites were performed according to Eiras et al. (2006).

Hosts measured 19.89 ± 3.11 (11.4-24.8) cm in standard length and weighed 376.36 ± 179.35 (49-853) g. The fish were caught with hooks and cast nets of different mesh sizes, in the main channel of the middle Negro River (19° 34' 29.2" S and 56° 14’ 37.1" W), a tributary of the Paraguay River in the Nhecolândia subregion of the central Pantanal wetland, state of Mato Grosso do Sul, Brazil.

Some parasite specimens were prepared for observation by means of scanning electron microscopy (SEM) according to Chiarini-Garcia (1997). Measurements of specimens in light microscopy (LM) were made with Leica (LAS Leica™) software. All measurements are in millimeters; means are followed by the range in parentheses.

These parasites were compared with specimens deposited in the Helminthological Collection of the Oswaldo Cruz Institute (CHIOC). Representative specimens were deposited in the Zoological Reference Collection at the Universidade Federal do Mato Grosso do Sul, together with a host voucher specimen (ZUFMS-PIS No. 3087). Parasitological descriptors were calculated according to Bush et al. (1997). The mean values of descriptors are followed by the standard deviation (±).

Results and Discussion

Of 152 P. nattereri examined, 84% had at least one species of metazoan endoparasite: 35% were parasitized by one species, 24% by two, 16% by three, 7% by four, and 1% by five species. Ten species of endoparasites were represented by the total of 4,212 specimens.

Nematoda
Camallanidae Railliet & Henry, 1915
Procamallanus Baylis, 1923
Procamallanus (Spirocamallanus) inopinatus Travassos, Artigas & Pereira, 1928 (ZUFMS-INV = 008)

Site of infection: cecum and intestine; prevalence 22.37%; mean abundance 0.36 ± 0.82; mean intensity 1.64 ± 0.98; range of variation: 1-5.

Based on 10 adult female specimens: Body 19.72 (12.35-24.28) long, 0.678 (0.546-0.806) largest width; oral opening surrounded by four cephalic papillae (Figure 1a) and two amphids; two median teeth (dorsal and ventral); buccal capsule including basal ring 0.141 (0.131-0.145) length and 0.16 (0.146-0.17) largest width, with 20-23 spiral thickenings in buccal capsule (Figure 1b); muscular-glandular oesophagus, short muscular portion 0.517 (0.49-0.59) length, 0.192 (0.17-0.21) largest width, oesophagus base 0.091 (0.08-0.1) width; glandular portion 0.869 (0.784-0.963) length, 0.241 (0.181-0.296) largest width, base 0.112 (0.095-0.143) width; nerve ring 0.276 (0.27-0.286) and excretory pore 0.365 (0.325-0.387) to anterior end; vulva 9.35
Metazoan endoparasites of Pygocentrus nattereri: The measurements indicate a wider range of variability in the body length and width, making species determination difficult. Genus and species determination was not possible based on the presented data.

Remarks: The number of spiral thickenings in the buccal capsule provided by Sprent (1990) was 14-25, which is close to the values reported for other species. The body length and width measurements are similar to those reported by Sprent (1990), with slight variations in the range.

Moravec et al. (1997) reported the presence of eight cephalic papillae arranged in two circles around the oral opening, differing from the present specimens which have only four cephalic papillae. Some specimens were compared to voucher specimen CHIOC 31.324, parasitic in Leporinus sp., from the Machado River, state of Rondônia, Brazil (Giese et al., 2009). Similarities in the number of the spiral thickenings were observed, and although the voucher specimen was not measured, it was visibly longer and wider than our specimens. This voucher specimen is permanently mounted, but due to the impossibility of en face observation and the poor condition of the specimens, it was not possible to observe the number of cephalic papillae.

Several fish species were reported as being parasitized by *P. (S.) inopinatus* (Moravec, 1998; Pavanelli et al., 2004), including *P. nattereri* (Eiras et al., 2010).

Philometridae Baylis & Daubney, 1926
Philometridae gen. sp. (ZUFMS-INV = 013)
Site of infection: body cavity; prevalence 0.66%; mean abundance 0.006 ± 0.08; intensity 1.

Based on one adult female specimen: Long and slender body, 15.39 length, 0.71 width; cuticle smooth, thin and fragile; mouth simple, buccal capsule absent; six cephalic papillae around oral opening; female gravid, viviparous, bulky uterus. Larvae 0.337 (0.189-0.452) length and 0.017 (0.014-0.230) width.

Remarks: Genus and species determination was not possible owing to the poor condition of this specimen. The family identification is according to the features of an adult female philometrid as described by Moravec (1998): anterior end rounded, peribuccal ring absent; mouth simple, buccal capsule absent; six cephalic papillae around oral opening; female gravid, viviparous, bulky uterus. Larvae 0.337 (0.189-0.452) length and 0.017 (0.014-0.230) width.

Remarks: The body length and width measurements are close to those reported for larval *Eustrongylides ignotus* Jägerskiöld, 1909, while the oesophagus length is close to those of larvae of *E. tubific* (Nitzsch, 1819) (Moravec, 1998) (we found no report of the oesophagus length in *E. ignotus*). The buccal cavity is longer than that of *E. tubific* (0.012) and closer to that reported for *E. ignotus* (0.060-0.097). Moravec et al. (1997), studying nematodes of freshwater fishes in Venezuela, described one larva of *Eustrongylides* sp., and reported a buccal cavity length (0.285) five times longer than in the present specimens.

It was not possible to count the cephalic papillae or to determine if the papillae of the outer circle were larger than the papillae of the inner circle, because of the condition of the specimens; these features enable the species determination of *Eustrongylides* according to Moravec (1998) and Thatcher (2006). Species determination of larval specimens belonging to the genus *Eustrongylides* Jägerskiöld, 1909 is problematic, and the surest way to identify the species is to obtain adult forms from experimental infection of birds, which are the definitive hosts (Moravec, 1998). Larval stages of this genus are recorded in a wide variety of fish species (Moravec, 1998; Pavanelli et al., 2004), and larvae of *E. ignotus* were previously recorded in high prevalence in *P. nattereri* (= *Serrasalmus nattereri*) (Moravec, 1998).

Acanthocheilidae Wülker, 1929
Brevimulticaecum Mozgovoy, 1951
Brevimulticaecum sp. larvae (ZUFMS-INV = 009)
Site of infection: stomach tissue and mesentery; prevalence 19.08%; mean abundance 22.36±71.24; mean intensity 117.24 ± 125.91; range of variation: 1-485.

Based on 10 larval specimens: Body 3.75 (3.07-4.1) length, 0.1 (0.072-0.137) width; ratio body length/width 2.6% (1.9-3.5); anterior end with four papillae, two subdorsal and two subventral and two tooth-like prominences; amphids between the lateral subdorsal and subventral papillae; oesophagus 0.401 (0.156-0.59) length, 0.018 (0.011-0.024) width at the base; comprising 10.48% (5.15-15.66) of body length; right ventricular lobes 0.06 (0.044-0.072) length, 0.041 (0.038-0.047) width; ratio right ventricular lobes length/oesophagus length 0.163 (0.103-0.322); left ventricular lobes 0.061 (0.043-0.075) length, 0.04 (0.036-0.044) width; ratio left ventricular lobes length/oesophagus length 0.165 (0.098-0.308); intestinal caecum 0.4 (0.329-0.486) length, 0.036 (0.032-0.04) width; nerve ring 0.183 (0.15-0.25) and excretory pore 0.198 (0.17-0.21) from anterior extremity; excretory nucleus situated about halfway along the intestinal caecum, 0.391 (0.28-0.48) from anterior extremity; conical tail 0.075 (0.041-0.08) length.

Remarks: The measurements indicate a wider range of values than reported by Moravec (1998). The first report of a fish parasitized by *Brevimulticaecum* sp. in the adult stage was in a stingray *Paratrygon motoro* (Müller & Henle, 1841) in the Salobra River, Mato Grosso by Rego (1979). This species was described as *Brevimulticaecum regoi* by Sprent (1990). In the Neotropical region, larvae of *Brevimulticaecum* sp. have been recorded in *Gymnotus carapo* Linnaeus, 1758 and *Loricariichthys brunneus* (Hancock, 1828) in Venezuela (Moravec et al., 1998).
In the present study, the specimens of *Acanthocephala* were examined to identify similarities with other congeneric species. The measurements of the trunk, proboscis, and proboscis receptacle, number of rows and hooks, as well as the dimensions of the lemnisci and ovijector, are very similar to those reported for *Echinorhynchus* by Machado Filho (1959). According to Machado Filho (1959), the dimensions of the trunk, proboscis and proboscis receptacle, number of rows and hooks, as well as the dimensions of the lemnisci and ovijector, are very similar to those reported for *E. paranensis* by Machado Filho (1959). According to Machado Filho (1959), the main differences observed between *E. paranensis* and other congeneric species is the presence of 14 longitudinal rows with 11 hooks per row on the proboscis. This specimen was considered adult, because it had well-developed reproductive structures, but non-gravid because it did not contain eggs. This is the first report of this species in *P. nottereri*.

Remarks: The measurements of the trunk, proboscis and proboscis receptacle, number of rows and hooks, as well as the dimensions of the lemnisci and ovijector, are very similar to those reported for *E. paranensis* by Machado Filho (1959). According to Machado Filho (1959), the main differences observed between *E. paranensis* and other congeneric species is the presence of 14 longitudinal rows with 11 hooks per row on the proboscis. This specimen was considered adult, because it had well-developed reproductive structures, but non-gravid because it did not contain eggs. This is the first report of this species in *P. nottereri*.

Pentastomida Diesing, 1836

Sebekidae Sambon, 1922

Leiperia Sambon, 1922

Leiperia gracile Diesing, 1835

Site of infection: body cavity; prevalence 3.29%; mean abundance 0.03 ± 0.17; intensity 1.

Based on 6 larval specimens: Body with anterior end rounded and tapering slightly at the posterior end, 21.53 (20.7-22.11) length, 0.89 (0.882-0.924) width, with 103 (100-107) distinct annuli with spines on their edges, spines 0.012 (0.009-0.014) length; posterior end with two pairs of double-hooks (Figure 2a), each with a principal hook and another smaller accessory; anterior pair of hooks with principal hook 0.24 (0.228-0.245) total length, and accessory hook 0.169 (0.144-0.178) total length; anterior pair of hooks, blade length (ab) = 0.201 (0.15-0.211), base length (ac) = 0.104 (0.091-0.13), base to extremity of hook blade (bc) = 0.84 (0.068-0.11) (Figure 2b); posterior pair of hooks, principal and accessory hooks measuring, respectively, 0.245 (0.24-0.26) and 0.141 (0.139-0.169) total length; bladder length (ab) = 0.19 (0.18-0.234), base length (ac) = 0.098 (0.06-0.121), base to extremity of hook blade (bc) = 0.119 (0.103-0.134); oral cadre slightly chitinized, 0.253 (0.237-0.268) length, 0.131 (0.109-0.152) width, located between the pairs of hooks; anus posterior and terminal.

Remarks: The measurements of these specimens in agreement with those reported for larval stages of *L. gracile* in *Salminus brevidens* (syn. = *S. brasiliensis*, Cuvier, 1819) and are slightly larger than those for larvae found in *H. malabaricus* and *Brachylaytistema* sp. Bleeker, 1862 described by Rego and Eiras (1989). The principal hooks of these specimens are larger than the accessory hooks, differing from specimens found in *S. brevidens* and *H. malabaricus*, where the accessory hooks were larger than the principal hooks (REGO; EIRAS, 1989). Some individuals were compared to the voucher specimens CHIOC 32.446, parasitic in *Brachylaytistema* sp., from the Salobra River, State of Mato Grosso, Brazil; CHIOC 30.353; parasitic in *H. malabaricus*, from the State of Espírito Santo, Brazil; and CHIOC 29.889a-b, parasitic in *Salminus brevidens* from the Salobra River (REGO; EIRAS, 1989).

Although some of these specimens were darkened and in permanent mounts, it was possible to observe similarities among
them, including the body length, number of annuli (more than 100) and the characteristics of the oral cadre, although the accessory hooks visually appeared to be smaller than the principal hooks in the voucher specimens. The report of this parasite in *P. nattereri* by Eiras et al. (2010) was based on the dissertation that reported the first record in this host and formed the basis of the present study, but Eiras et al. (2010) did not report any description of specimens, collection locality, or parasitological descriptors.

Sebekidae Sambon, 1922

Sebekia Sambon, 1922

Sebekia oxycephala Diesing, 1835 (ZUFMS-INN = 007)

Site of infection: body cavity; prevalence 29.61%; mean abundance 0.69±1.41; mean intensity 2.33 ± 1.70; range of variation: 1-8.

Based on 10 larval specimens: Body with anterior end rounded and tapering slightly at the posterior end, 6.7 (5.136-9.463) length, 0.832 (0.68-1.03) width, with 63 (56-75) distinct annuli with spines on their edges, spines 0.022 (0.017-0.025) length (Figure 3a); anterior end with two pairs of double-hooks, each with a principal hook and another smaller accessory (Figure 3b); anterior pair of hooks with principal hook 0.084 (0.061-0.125) total length and accessory hook 0.071 (0.048-0.113) total length; blade length (ab) = 0.073 (0.057-0.102), base length (ac) = 0.046 (0.028-0.079), base to extremity of hook blade (bc) = 0.036 (0.026-0.047); posterior pair of hooks with principal and accessory hooks measuring, respectively, 0.086 (0.06-0.121) and 0.067 (0.034-0.102) total length; blade length (ab) = 0.08 (0.059-0.102), base length (ac) = 0.048 (0.038-0.06), base to

Figure 2. Micrographs of *Leiperia gracile*: A – SEM micrograph of anterior end, ventral view. B – LM micrograph showing the main and accessory hooks; (ab) = length of hook; (ac) = hook base; (bc) = length from base to extremity of hook blade.

Figure 3. SEM micrographs of *Sebekia oxycephala*: A – detail of annulus with spines on its edges. B – anterior end, ventral view.
extremity of hook blade (bc) = 0.052 (0.03-0.088); oral cadre slightly chitinized, 0.134 (0.115-0.16) length, 0.066 (0.047-0.078) width, located between pairs of hooks; anus posterior and terminal.

Remarks: The measurements and some morphological features of *S. oxycephala* are close to those reported by Rego and Eiras (1989), mainly in relation to body length, hooks and number of annuli. In this study, specimens of *S. oxycephala* had the principal hooks larger than the accessory hooks, differing from the description by Rego and Eiras (1989) for this same species in *P. nattereri*. Some of the specimens were compared to voucher specimens CHIOC 32.445, parasitic in *P. nattereri*, from the Cuiabá River, State of Mato Grosso, Brazil and CHIOC 32.447, parasitic in *P. corruscans*, also from the Cuiabá River (REGO; EIRAS, 1989). These specimens were similar in the shape of hooks, oral cadre, body dimensions and number of annuli.

Despite the observed similarity between the larvae of *S. oxycephala* and *L. gracile*, these larvae can be distinguished mainly by the body size, approximately three times longer; by the number of body annuli, approximately twice as numerous in *L. gracile*; and by the shape of the oral cadre, oval to elongate in *Sebekia* spp. and U-shaped in *Leiperia* spp. (OVERSTREET et al., 1985; REGO; EIRAS, 1989; JUNKER et al., 2000).

Subtriquetridae Fain, 1961

Subtriquetra Sambon, 1922

Subtriquetra sp. 1 (ZUFMS-INV = 011)

Site of infection: swim bladder; prevalence 6.58%; mean abundance 0.09 ± 0.48; mean intensity 1.5 ± 1.26; range of variation: 1-5.

Based on 10 larval specimens: Larvae with bright red body color while in the host; body elliptical, ventrally flattened and dorsally convex; anterior end wider than posterior end; body 2.10 (1.562-2.528) length, 0.651 (0.556-0.779) largest width, with 30 (28-33) distinct annuli with spines on their edges, spines 0.025 (0.022-0.029) length, chloride cells arranged in single row in each annulus (Figure 4a); anterior end with two symmetrical cephalic papillae, and two pairs of single hooks (Figure 4b); anterior pair of hooks 0.164 (0.129-0.206) total length, blade length (ab) = 0.151 (0.111-0.201), base length (ac) = 0.109 (0.073-0.138),

Figure 4. Micrographs of *Subtriquetra* spp.: A – SEM micrograph showing rows of spines and chloride cells (black arrow). B – SEM micrograph of anterior end, ventral view of *Subtriquetra* sp. 1. C – LM micrograph showing measurements of simple hook (ab) = length of hook blade; (ac) = hook base; (bc) = length from base to extremity of hook blade. D – SEM micrograph of anterior end, ventral view of *Subtriquetra* sp. 2.
base to extremity of hook blade (bc) = 0.076 (0.054-0.092) (Figure 4c); posterior pair of hooks 0.174 (0.131-0.22) total length, blade length (ab) = 0.162 (0.122-0.213), base length (ac) = 0.107 (0.076-0.126), base to extremity of hook blade (bc) = 0.08 (0.057-0.107); oral cadre 0.128 (0.112-0.141) length, 0.068 (0.057-0.078) width, located between the first pairs of hooks.

Subtriquetra sp. 2 (ZUFMS-INV = 012)

Site of infection: swim bladder; prevalence 22.37%; mean abundance 0.55 ± 1.69; mean intensity 2.5±2.86; range of variation: 1-15.

Based on 10 larval specimens (Figure 4d): Larvae with whitish body while in the host; body elliptical, slightly flattened; anterior end wider than posterior; body 2.56 (2.193-3.21) length, 0.891 (0.781-1.08) largest width, with 30 (28-34) distinct annuli with spines on their edges, spines 0.029 (0.028-0.032) length; chloride cells arranged in single row in each annulus; anterior end with two symmetrical cephalic papillae, and two pairs of single hooks; anterior pair of hooks 0.211 (0.176-0.256) total length, blade length (ab) = 0.197 (0.164-0.231), base length (ac) = 0.14 (0.115-0.153), base to extremity of hook blade (bc) = 0.086 (0.077-0.101); posterior pair of hooks 0.199 (0.157-0.253) total length, blade length (ab) = 0.191 (0.154-0.237), base length (ac) = 0.133 (0.113-0.157), base to extremity of hook blade (bc) = 0.082 (0.066-0.098); oral cadre 0.153 (0.125-0.175) length, 0.097 (0.083-0.110) width, located between the first pairs of hooks.

Remarks: According to Junker and Boonker (2006), the features observed in these two morphospecies are in agreement with those of the genus *Subtriquetra* Sambon, 1922 including the elliptical and dorsally flattened body, and the rounded oral cadre located between two pairs of simple, slender and sharply pointed hooks.

Records of larval stages of species of *Subtriquetra* parasitizing fish are scarce, and are mainly from South America, which prevented the specific identification of this morphospecies. These two morphotypes were considered distinct because of the differences in the shape of the oral cadre, hooks and spines, structures that were larger in *Subtriquetra* sp. 2.

Some collected specimens were compared to some of the voucher specimens of the genus *Subtriquetra*, CHIOC 17.797, parasitic in *H. malabaricus*, from the Juparanã Lagoon, State of Espírito Santo, Brazil (TRAVASSOS; FREITAS, 1940) and CHIOC 11.424, parasitic in *P. nattereri*, from the Salobra River, State of Mato Grosso do Sul, Brazil (unknown publication). These parasites were similar in shape and dimensions of the body and oral cadre, and in the presence of ventral papillae on the anterior end of the body.

Acknowledgments

The authors thank Marcelo Knof, PhD, curator of the Helminthological Collection of the Oswaldo Cruz Institute. This study was partially supported by the Fundação de Apoio ao Desenvolvimento do Ensino, Ciência e Tecnologia do Estado de Mato Grosso do Sul (FUNDECT) and by the Centro de Pequisas do Pantanal (CPP). W. Vicentin and K.R.I. Vieira were supported by student fellowships from FUNDECT and Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq), respectively.

References

Moravec F. Nematodes of Freshwater Fishes of the Neotropical Region. Prague: Institute of Parasitology, Academy of Sciences of the Czech Republic; 1998.

Thatcher VE. Aquatic Biodiversity in Latin America: Amazon Fish Parasites. Moscow: Pensoft; 2006.

