Are similar the parasite communities structure of *Trachelyopterus coriaceus* and *Trachelyopterus galeatus* (Siluriformes: Auchenipteridae) in the Amazon basin?

São similares a estrutura das comunidades de parasitos de *Trachelyopterus coriaceus* e *Trachelyopterus galeatus* (Siluriformes: Auchenipteridae) na bacia amazônica?

Wanderson Michel de Farias Pantoja1; Lenise Vargas Flores Silva1; Marcos Tavares-Dias2*

1 Programa de Pós-graduação em Recursos Aquáticos e Continentais Amazônicos – RACAM, Universidade Federal do Oeste do Pará – UFOPA, Santarém, PA, Brasil
2 Laboratório de Sanidade de Organismos Aquáticos, Embrapa Amapá, Macapá, AP, Brasil

Received November 10, 2015
Accepted February 11, 2016

Abstract

The aim of this study was to compare the parasite communities in two sympatric host populations, *Trachelyopterus coriaceus* and *Trachelyopterus galeatus*, which were caught in tributary of the Amazon River in Brazil. All the specimens of *T. galeatus* and *T. coriaceus* were infected by one or more parasites, such as *Ichthyophthirius multifiliis*, *Tripartiella tetramerii*, *Trichodina nobilis*, *Cosmetocleithrum striatuli*, *Contracaecum sp.*, *Cystidicoloides sp.*, *Dadaytremoides parauchenipteri* and *Gorytocephalus spectabilis*. Seven species were common to both host fish, and there were 1-5 parasite species per host. In both hosts, trichodinids were dominant. Aggregate dispersion of ectoparasites and endoparasites was observed, with greater aggregation among endoparasites. Only the ectoparasites species showed differences in intensity and/or abundance. However, the parasite communities of the two hosts were taxonomically similar (99%) and characterized by high prevalence and high abundance of ectoparasites, but with low diversity, prevalence and abundance of endoparasites. *Trachelyopterus galeatus*, the host with the larger body size, presented greater variation of Brillouin diversity and evenness, while *T. coriaceus* had higher Berger-Parker dominance values and total numbers of parasites. This first study on these parasites of *T. galeatus* and *T. coriaceus* showed that the life mode, size of the hosts and the availability of infective forms of the parasites were the main factors that influenced the parasite communities structure.

Keywords: Amazon, auchenipterid, diversity, infection, parasites.

Resumo

O objetivo deste estudo foi comparar as comunidades de parasitos de dois hospedeiros simpatricos, *Trachelyopterus coriaceus* e *Trachelyopterus galeatus* de um tributário do sistema do Rio Amazonas, no Brasil. Todos os espécimes de *T. galeatus* e *T. coriaceus* estavam infectados por um ou mais parasitos, tais como *Ichthyophthirius multifiliis*, *Tripartiella tetramerii*, *Trichodina nobilis*, *Cosmetocleithrum striatuli*, *Contracaecum sp.*, *Cystidicoloides sp.*, *Dadaytremoides parauchenipteri* e *Gorytocephalus spectabilis*. Sete espécies de parasitos foram comuns para ambos os peixes hospedeiros e houve de 1-5 espécies de parasitos por hospedeiro. Em ambos os hospedeiros houve dominância de espécies de tricodinídeos. A dispersão dos ectoparasitos e endoparasitos foi agregada, mas a maior agregação foi de endoparasitos. Somente espécies de ectoparasitos mostraram diferenças na intensidade e/ou abundância. Entretanto, as comunidades parasitárias dos dois hospedeiros foram taxonomicamente semelhante (99%) e caracterizada por alta prevalência e abundância de ectoparasitos, mas com baixa diversidade, prevalência e abundância de endoparasitos. *Trachelyopterus galeatus*, com maior tamanho corporal, apresentou maior variação da diversidade Brillouin e uniformidade, enquanto *T. coriaceus* teve maiores valores de dominância de Berger-Parker e número total de parasitos. Este primeiro estudo sobre estes parasitos de *T. galeatus* e *T. coriaceus* mostrou que o modo de vida, tamanho dos hospedeiros e disponibilidade de formas infectantes de parasitos foram os principais fatores que influenciaram a estrutura de comunidades dos parasitos encontrados.

Palavras-chave: Amazônia, auchenipterídeo, diversidade, infecção, parasitos.

*Corresponding author: Marcos Tavares-Dias. Embrapa Amapá, Rodovia Juscelino Kubitschek, Km 5, 2600, CEP 68903-419, Macapá, AP, Brasil.
e-mail: marcos.tavares@embrapa.br
Introduction

Auchenipteridae are Siluriformes with around 21 genera and 64 species distributed in freshwater rivers in South America, from Argentina to Panama (BURGESS, 1989; FROESE & PAULY, 2015). Most of these species have crepuscular or nocturnal habits, swimming frenetically close to the water surface in search of insects or other food items. During the daytime, they remain hidden in crevices or holes, or under tree trunks and branches. *Trachelyopterus coriaceus* Valenciennes, 1840, and *Trachelyopterus galeatus* Linnaeus, 1766, are congenic phylogenetically related Auchenipteridae (BIRINDELLI, 2014) of small size that reach a maximum of 22 cm, and reach sexual maturity at a length of around 11 cm. Both of these fish species are found in wet areas of floodplains, and thus, *T. galeatus* and *T. coriaceus* are adapted to these hypoxic environments. The diet of *Trachelyopterus* spp. generally consists of insects, rotifers, mollusks and crustaceans (ANDRADE-LÓPEZ & MACHADO-ALLISON, 2009; MESQUITA et al., 2011; FROESE & PAULY, 2015). These two species of *Trachelyopterus* are not listed by the IUCN as endangered. Therefore, do these two siluriforms Auchenipteridae of the Amazon basin of Brazil have similar parasite communities structure?

The Igarapé Fortaleza basin is a singular ecosystem that is located in the eastern Amazon region of northern Brazil, and is an ecosystem highly influenced by the Amazon River system. It consists of linked fluvial physical systems that provide freshwater drainage, and is influenced by the high rainfall of the Amazon region and the daily tides of the Amazon River (GAMA & HALBOTH, 2004; TAVARES-DIAS et al., 2013; BITTENCOURT et al., 2014a). The waters that periodically spread out across the floodplain are rich in nutrients, because of the rapid decomposition of grasses, animal remains and the humus layer of the forest. This leads to growth of new vegetation and is an ecosystem highly influenced by the Amazon River system, northern Brazil.

Between September and December 2012, 37 specimens of *T. galeatus* and 35 specimens of *T. coriaceus* were caught in the Igarapé Fortaleza basin, tributary of the Amazon River system in the municipality of Macapá (state of Amapá), in northern Brazil, for parasitological analyses. All the fish were caught using hand nets and gillnets (15 to 25 mm) and were transported alive to the Laboratory for Aquatic Organism Health at Embrapa Amapá (Macapá), for necropsy. This study was developed in accordance with the principles adopted by the Brazilian College of Animal Experimentation (Cobea).

Materials and Methods

Fish and capture location

Between September and December 2012, 37 specimens of *T. galeatus* and 35 specimens of *T. coriaceus* were caught in the Igarapé Fortaleza basin, tributary of the Amazon River system in the municipality of Macapá (state of Amapá), in northern Brazil, for parasitological analyses. All the fish were caught using hand nets and gillnets (15 to 25 mm) and were transported alive to the Laboratory for Aquatic Organism Health at Embrapa Amapá (Macapá), for necropsy. This study was developed in accordance with the principles adopted by the Brazilian College of Animal Experimentation (Cobea).

Parasites collection and analysis procedures

The fish were weighed (g) and their lengths were measured (cm). Following this, the gills and gastrointestinal tract were examined to ascertain whether any protozoan and metazoan parasites were present. All the parasites were collected, fixed, conserved, quantified and stained for identification (EIRAS et al., 2006). The ecological terms used were those recommended by the Brazilian College of Animal Experimentation (Cobea).
Diversity software (Pisces Conservation Ltd, UK). The dispersion index (ID) and discrepancy index (D) were calculated using the Quantitative Parasitology 3.0 software, in order to detect the distribution pattern of the parasite infracommunities (RÖZSA et al., 2000), for species with prevalence > 10%. The significance of the ID, for each infracommunity, was tested using the d-statistic (LUDWIG & REYNOLDS, 1988). Similarity in parasite communities between host populations was compared using the Jaccard index and Morisita index (LUDWIG & REYNOLDS, 1988; MAGURRAN, 2004). Both similarity indices were calculated using the Past software (Paleontological Statistics version 3.0).

Body weight (g) and total length (cm) were used to calculate the relative condition factor (Kn) of the fish using the length-weight relationship (W = aLn^b) after logarithmic transformation of length and weight and subsequent adjustment of two straight lines, thus obtaining lnY = lnA + BlnX (LE-CREN, 1951).

Data analyses

To compare prevalence between *T. galeatus* and *T. coriaceus*, the chi-square test (χ²) was used, followed by the Yates correction. The intensity, abundance, species richness, diversity (HB), evenness (E) and dominance (d) were compared between the two hosts using the Mann-Whitney test (U). The Shapiro-Wilk test was used to determine whether parasite abundance data followed a normal distribution pattern. Spearman’s correlation coefficient (r) was used to determine possible correlations of the total length and body weight with parasites abundance, the Brillouin index (HB) and the richness of parasite species (ZAR, 2010).

Principal component analysis (PCA) was carried out to compare the ways in which body and diversity influenced the parasite communities of *T. galeatus* and *T. coriaceus*. This analysis was performed using the Past software (Paleontological Statistics, version 3.0).

Physical and chemical parameters of the water

The mean temperature (28.5 ± 0.25 °C), dissolved oxygen, pH (5.3 ± 0.39), electrical conductivity (0.15 ± 0.17 μS/cm), turbidity (40.9 ± 17.9 UNT) and total dissolved solids (0.02 ± 0.0 g/L) were measured using a multiparameter probe (Horiba, model U-52). The ammonia level (0.52 ± 0.41 mg/L), alkalinity (26.6 ± 5.7 mg/L) and hardness (23.3 ± 5.7 mg/L) were measured using a kit (Alfakit®), and transparency (31.8 ± 13.5 cm) was measured using a Secchi disc.

Results

All of the 72 specimens of *T. galeatus* and *T. coriaceus* examined were parasitized by one or more species. Species of Protozoa, Monogeneidea, Digenea and Nematoda were collected from both hosts. However, the dominant species were *Tripartiella tetramerii* Martins, Marchiori, Bittencourt & Tavares-Dias, 2016 and *Trichodina nobilis* Chen, 1963 (Trichodinidae), followed by *Ichthyophthirius multifiliis* Fouquet, 1876 (Ichthyophthiriiidae). *Gorytocephalus spectabilis* Machado, 1959 (Neoechinorhynchidae) was only found in the intestine of *T. galeatus* (Table 1).

The prevalence (χ² = 3.657; p = 0.130) and mean abundance (U = 494.5; p = 0.0001) of *I. multifiliis* were similar for *T. coriaceus* and *T. galeatus*, but the mean intensity (U = 287.5; p = 0.0002) was greater in *T. galeatus*. The prevalence (χ² = 5.083; p = 0.733) of *T. tetramerii* and *T. nobilis* was similar for *T. coriaceus* and *T. galeatus*, but the mean intensity (U = 278.0; p = 0.0004) and mean abundance (U = 278.0; p = 0.0001) were greater in *T. coriaceus*. Also in *T. coriaceus*, the prevalence (χ² = 6.192; p = 0.039), mean intensity (U = 131.5; p = 0.0001) and mean abundance (U = 131.5; p = 0.0001) of *Cosmetocleithrum striatuli* Abdallah, Azevedo & Luque, 2012 (Dactylogyridae) were greater than in *T. galeatus*.

The prevalence (χ² = 3.576; p = 0.1020), mean abundance (U = 527.0; p = 0.175) and mean intensity (U = 40.0; p = 0.378) of *Dadaytremoides parauchenipteri* Lunasaki, 1989 (Cladorchiidae) were similar for *T. coriaceus* and *T. galeatus*. The prevalence (χ² = 0.183; p = 0.9202), mean intensity (U = 20.5; p = 0.943) and mean abundance (U = 624.0; p = 0.791) of *Contracecum* sp. were similar for *T. coriaceus* and *T. galeatus*. The prevalence (χ² = 6.00; p = 0.014) and mean abundance (U = 443.0; p = 0.021) of *Cystidicoloidea* sp. were greater in *T. galeatus* than in *T. coriaceus*, but the mean intensity (U = 69.5; p = 0.334) was similar for the two hosts.

The parasite species in *T. galeatus* and *T. coriaceus* presented an aggregated distribution pattern (Table 2), which is a common pattern for freshwater fish.

The richness of parasite species in *T. galeatus* and *T. coriaceus* was similar, but the Brillouin diversity index and evenness were greater for *T. galeatus*, while the Berger-Parker dominance was greater for *T. coriaceus*.

Table 1. Parasites of two Auchenipteridae fish in a tributary in the Amazon River system (Brazil).

<table>
<thead>
<tr>
<th>Parasite species</th>
<th>Host species</th>
<th>Trachelyopterus galeatus (N = 37)</th>
<th>Trachelyopterus coriaceus (N = 35)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>P (%)</td>
<td>MI</td>
<td>MA</td>
</tr>
<tr>
<td>Ichthyophthirius multifiliis</td>
<td>83.8</td>
<td>958.7</td>
<td>803.3</td>
</tr>
<tr>
<td>Tripartiella tetramerii</td>
<td>86.5</td>
<td>6878.4</td>
<td>5948.9</td>
</tr>
<tr>
<td>Cosmetocleithrum striatuli</td>
<td>83.8</td>
<td>23.2</td>
<td>19.4</td>
</tr>
<tr>
<td>Dadaytremoides parauchenipteri</td>
<td>40.5</td>
<td>2.5</td>
<td>0.9</td>
</tr>
<tr>
<td>Contracecum sp. (larvae)</td>
<td>13.5</td>
<td>3.6</td>
<td>0.5</td>
</tr>
<tr>
<td>Cystidicoloidea sp. (larvae)</td>
<td>54.1</td>
<td>5.1</td>
<td>2.7</td>
</tr>
<tr>
<td>Gorytocephalus spectabilis</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
</tbody>
</table>

P = Prevalence; MI = Mean intensity; SD = Standard deviation; MA = Mean abundance; FD = Frequency of dominance; SI = Site of infection.
for *T. coriaceus* (Table 3). In *T. galeatus*, the Brillouin index (*HB*) did not show any correlation with length (*rs* = −0.235; *p* = 0.133) and weight (*rs* = −0.225; *p* = 0.153); nor did the parasite richness with the length (*rs* = −0.154; *p* = 0.331) and weight (*rs* = −0.098; *p* = 0.535). In *T. coriaceus*, the Brillouin index (*HB*) did not show any correlation with the hosts’ (*rs* = 0.094; *p* = 0.552) and weight (*rs* = 0.026; *p* = 0.869); nor did the parasite richness with the length (*rs* = −0.140; *p* = 0.335) and weight (*rs* = −0.106; *p* = 0.506). In both *T. galeatus* and *T. coriaceus*, the predominant level of parasitism was 3–4 species per host (Figure 1).

In *T. coriaceus*, the abundance of *T. tetramerii*, *T. nobilis* and *C. striatuli* showed a negative correlation with host length. In *T. galeatus*, the abundance of *Tripartiella tetramerii* presented a positive correlation with host length and weight, while the abundance of *C. striatuli* presented a negative correlation with host length (Table 4).

Principal component analysis based on the hosts’ body and diversity parameters showed that for Brillouin diversity, evenness, species richness of parasites and Berger-Parker dominance were the main factor correlated with *T. coriaceus* and *T. galeatus.*

Table 2. Index of dispersion (ID), *d*-statistic, discrepancy index (D) and frequency of dominance (FD) for the infracommunities of parasites in species of Auchenipteridae in the Amazon River system (Brazil).

<table>
<thead>
<tr>
<th>Hosts</th>
<th>Parasites</th>
<th>ID</th>
<th>d</th>
<th>D</th>
<th>ID</th>
<th>d</th>
<th>D</th>
</tr>
</thead>
<tbody>
<tr>
<td>Ichthyophthirius multifiliis</td>
<td>2.366</td>
<td>4.65</td>
<td>0.359</td>
<td>2.103</td>
<td>3.85</td>
<td>0.317</td>
<td></td>
</tr>
<tr>
<td>Tripartiella sp. and Trichodina nobilis</td>
<td>2.580</td>
<td>5.22</td>
<td>0.375</td>
<td>1.976</td>
<td>3.49</td>
<td>0.277</td>
<td></td>
</tr>
<tr>
<td>Cosmetocleithrum striatuli</td>
<td>2.352</td>
<td>4.61</td>
<td>0.418</td>
<td>2.186</td>
<td>4.09</td>
<td>0.306</td>
<td></td>
</tr>
<tr>
<td>Dadaytremoides parauchenipteri</td>
<td>1.702</td>
<td>2.66</td>
<td>0.677</td>
<td>2.360</td>
<td>4.56</td>
<td>0.826</td>
<td></td>
</tr>
<tr>
<td>Contracaecum sp.</td>
<td>1.833</td>
<td>3.08</td>
<td>0.875</td>
<td>2.392</td>
<td>4.65</td>
<td>0.856</td>
<td></td>
</tr>
<tr>
<td>Cystidicoloides sp.</td>
<td>3.461</td>
<td>7.38</td>
<td>0.659</td>
<td>2.638</td>
<td>5.29</td>
<td>0.810</td>
<td></td>
</tr>
</tbody>
</table>

Table 3. Mean diversity indexes and body parameters ± standard deviation and ranges (in parentheses) for the parasites community in Auchenipteridae species in the Amazon River system (Brazil). *U*: Mann-Whitney.

<table>
<thead>
<tr>
<th>Parameters</th>
<th>Trachelyopterus galeatus (N = 37)</th>
<th>Trachelyopterus coriaceus (N = 35)</th>
<th>U</th>
<th>p</th>
</tr>
</thead>
<tbody>
<tr>
<td>Body length</td>
<td>10.8 ± 2.0 (7.5-14.5)</td>
<td>9.3 ± 1.5 (6.6-13.5)</td>
<td>364.0</td>
<td>0.001</td>
</tr>
<tr>
<td>Body weight</td>
<td>20.1 ± 13.2 (4.0-52.0)</td>
<td>10.7 ± 7.1(4.0-42.0)</td>
<td>354.5</td>
<td>0.001</td>
</tr>
<tr>
<td>Brillouin (HB)</td>
<td>0.32 ± 0.16 (0.0-0.65)</td>
<td>0.26 ± 0.12 (0.03-0.56)</td>
<td>433.0</td>
<td>0.016</td>
</tr>
<tr>
<td>Species richness</td>
<td>3.62 ± 0.92 (1-5)</td>
<td>3.69 ± 0.80 (2-5)</td>
<td>643.5</td>
<td>0.964</td>
</tr>
<tr>
<td>Evenness (E)</td>
<td>0.18 ± 0.09 (0-0.38)</td>
<td>0.12 ± 0.06 (0.01-0.29)</td>
<td>460.0</td>
<td>0.015</td>
</tr>
<tr>
<td>Berger-Parker (d)</td>
<td>0.80 ± 0.06 (0.72-1.00)</td>
<td>0.92 ± 0.04 (0.79-1.00)</td>
<td>400.0</td>
<td>0.005</td>
</tr>
<tr>
<td>Total number of parasites</td>
<td>250,700</td>
<td>511,261</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>Number of ectoparasites</td>
<td>3</td>
<td>3</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>Number of endoparasites</td>
<td>3</td>
<td>4</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>Endoparasites (adult)</td>
<td>1</td>
<td>2</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>Endoparasites (larval)</td>
<td>2</td>
<td>2</td>
<td>-</td>
<td>-</td>
</tr>
</tbody>
</table>

Figure 1. Species richness of parasites for species of Auchenipteridae in the Amazon River system (Brazil).
The cumulative variance explained by the variables used was 83.9% for both axes (Figure 2).

The Jaccard index ($J = 0.86$) and Morisita index ($C_{\lambda} = 0.99$) demonstrated similarity between the parasite communities of *T. coriaceus* and *T. galeatus*. The multivariate analysis based on the component community of the parasites of *T. coriaceus* and *T. galeatus* allowed observing that there is no separation among these hosts and only *I. multifiliis* was the species with least importance in this analysis (Figure 3).

For *T. galeatus*, the equation for the weight-length relationship was $Wt = 0.0034Lt^{3.5798}$ ($r^2 = 0.952$); and for *T. coriaceus*, it was $Wt = 0.0091Lt^{3.1295}$ ($r^2 = 0.890$). Thus, both of these relationships

Table 4. Spearman’s correlation coefficient (rs) for the abundance of parasites, in relation to the total length (cm) and body mass (g) for species of Auchenipteridae in the Amazon river system (Brazil).

<table>
<thead>
<tr>
<th>Parasites</th>
<th>Trachelyopterus galeatus (N = 37)</th>
<th>Trachelyopterus coriaceus (N = 35)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Total length</td>
<td>Body weight</td>
</tr>
<tr>
<td>Ichthyophthirius multifiliis</td>
<td>0.2362</td>
<td>0.1593</td>
</tr>
<tr>
<td>Tripartiella sp. and Trichodina nobilis</td>
<td>0.3258</td>
<td>0.0490</td>
</tr>
<tr>
<td>Cosmetocleithrum striatuli</td>
<td>–0.1980</td>
<td>0.0240</td>
</tr>
<tr>
<td>Dadaytremoides parauchenipteri</td>
<td>–0.2201</td>
<td>0.1905</td>
</tr>
<tr>
<td>Contracaecum sp.</td>
<td>0.0669</td>
<td>0.6939</td>
</tr>
<tr>
<td>Cystidicoloides sp.</td>
<td>–0.0642</td>
<td>0.7058</td>
</tr>
</tbody>
</table>

Figure 2. Scatterplot scores from the principal component analysis (PCA) on factors influencing the parasites component communities of *Trachelyopterus galeatus* (○) and *Trachelyopterus coriaceus* (●) in the Amazon River system (Brazil).

Figure 3. Scatterplot scores from the principal component analysis (PCA) of the parasites component communities of *Trachelyopterus galeatus* (○) and *Trachelyopterus coriaceus* (●) in the Amazon River system (Brazil). ICHTH: *Ichthyophthirius multifiliis*, COSMET: *Cosmetocleithrum striatuli*, TRICHOD: *Tripartiella* sp. and *Trichodina nobilis*, DADAY: *Dadaytremoides parauchenipteri*, CONTRAC: *Contracaecum* sp., CYSTID: *Cystidicoloides* sp., GORYTO: *Gorytocephalus spectabilis*.
were therefore allometrically positive, which indicates that there was greater increase in size than in body weight.

Discussion

For populations of *T. galeatus* of diverse localities in the Brazil, *Microchis oligotum*annual Lunaschi, 1987; *Clinostomum complanatum* Rudolphi, 1814; *Cavallaena arandasi*; *Contracaecum* sp.; *Goezia* sp. and *Cucullanella* sp. (PAVANELLI & SANTOS, 1990; FERNANDES & KOHN, 2001; DIAS et al., 2006; TAKEMOTO & LIZAMA, 2009; KOHN et al., 2011) have been recorded. For wild populations of *T. galeatus* in Argentina, only *Creptotrema creptotrema* Travassos, Artigas and Pereira, 1928 and *Dadaytremoides parauchenipteri* Lunaschi, 1989 (LUNASCHI, 1989; LUNASCHI & SUTTON, 1995) have been reported. However, among all these helminth species only *Contracaecum* larvae and *D. parauchenipteri* were also found on the hosts of this study.

This first study on the parasitic fauna of *T. coriaceus* and *T. galeatus* showed that they had similar richness of species and component community. Body size, diversity and evenness were greater for *T. galeatus*, but body size did not influence the diversity and richness of parasite species, in either of the two hosts. In these two hosts in the Amazon region, the dominant species were *T. tetrameris* and *Trichodina nobilis*, followed by *I. multifiliis*. These protozoans are typical of lentic-eutrophized environments like the hydrographic basin of this study (TAVARES-DIAS et al., 2013, 2014; BITTENCOURT et al., 2014b). In addition, in *T. coriaceus* and *T. galeatus*, the greatest richness of parasites was in species of helminths, with predominance of endoparasites of relatively high prevalence and low abundance, but only two endoparasites were found in larval stage (*Contracaecum* sp. and *Cystidicoloidea* sp.). Several variables may influence the presence of endoparasites species, especially exposure to infective forms, which are directly acquired through the hosts’ feeding (MOREIRA et al., 2009; TAKEMOTO & LIZAMA, 2009; MESAQUITA et al., 2011; TAVARES-DIAS et al., 2013). It is well known that the diet of the fish can be deduced from trophically transmitted parasites and because most endoparasites are associated with a specific ecological niche and diet, high diversity in host parasite fauna is often a result of a diverse host diet. Hence, a diverse parasitic communities of trophically transmitted parasites may indicate that the host population consumed a diversity of prey in habitat (WILSON & HUBSCHMAN, 1985; MORAVEC, 2007; TARASCHEWSKI, 2008; MOREIRA et al., 2009; MORAVEC, 2009; NEVES et al., 2013; TAVARES-DIAS et al., 2013; BITTENCOURT et al., 2014b; TAVARES-DIAS et al., 2014).

The ectoparasites and endoparasites of *T. coriaceus* and *T. galeatus* presented aggregated dispersion, but endoparasites infections were the more aggregated. Aggregated dispersion patterns for ectoparasites and endoparasites have also been described in other freshwater hosts (MESAQUITA et al., 2011; TAVARES-DIAS et al., 2014; AMARANTE et al., 2015), and these have been attributed to factors relating to the hosts, parasites and environment. These factors include formation of schools of fish, taxon in relation to sex, habitat, presence of parasite larvae, feeding habits and length of the hosts and the genetic and immune heterogeneity of the hosts (ROHDE et al., 1995; TAVARES-DIAS et al., 2014; AMARANTE et al., 2015).

The levels of infection due to *I. multifiliis* in *T. coriaceus* and *T. galeatus* were similar. This ectoparasite ciliate, which does not have parasitic specificity, occurs more frequently in fish in farmed environments, influenced by factors related to the parasite and host, and also by the physical and chemical characteristics of the water, such as dissolved oxygen levels, pH, hardness, alkalinity and temperature (WEL et al., 2013; FORWOOD et al., 2015). However, this protozoon has wide geographic distribution and can parasitize fish on all continents. Severe infections may also cause mortality in populations of wild fish, because *I. multifiliis* has the capacity to reproduce rapidly (RAISSY et al., 2010; FORWOOD et al., 2015), when the environmental conditions are favorable. This was the first record of *I. multifiliis* for *T. coriaceus* and *T. galeatus*.

In *T. coriaceus* and *T. galeatus*, the prevalence of *T. tetrameris* and *T. nobilis* was similar for both hosts, but the intensity and abundance were higher in *T. coriaceus*. Moreover, the abundance of these trichodinids was higher in individuals of *T. galeatus* of greater size and was lower in individuals of *T. coriaceus* of greater length. In populations of wild fish, infections due to species of trichodinids are more frequent in environments that are eutrophized and have low oxygen levels (BASSON & VAN AS, 2002; TAVARES-DIAS et al., 2014), like the Igarapé Fortaleza basin. This was the first record of *T. tetrameris* and *T. nobilis* for *T. coriaceus* and *T. galeatus*.

Cosmoteliastrum striatulisi, a monogenoidean originally described in *Trachelopterus striatus* Steindachner, 1877, in the Guandu River, Southern Brazil region (ABDALLAH et al., 2012; SILVEIRA et al., 2013), showed a higher level of infection in adults of *T. coriaceus* than in subadults of *T. galeatus*, in the present study. These differences occurred because smaller and therefore younger individuals of *T. coriaceus* were more parasitized. In *T. coriaceus*, the abundance of *C. striatuli* showed a negative correlation with host length, while in *T. galeatus* the correlation was weak. These distinct results were due to differences in the host size. Thus, since *C. striatuli* was previously only known in *T. striatulisi* (COHEN et al., 2013), the present paper provides the first report of this monogeneanoid for *T. galeatus* and *T. coriaceus*.

Goryoscolexus spectabilis only parasitized *T. coriaceus*, and at low infection levels, which were similar to those reported for *Aquadens tetramerus* Heckel, 1840; *Heros efasciatus* Heckel, 1840; *Chaeotroanchus flavescens* Heckel, 1840; and *Satamnoperca jurupari* Heckel, 1840 - all these hosts were also from the ecosystem of this study (BITTENCOURT et al., 2014b; TAVARES-DIAS et al., 2014). Although congeneric host species have similar biological and behavioral characteristics and are therefore potential hosts for parasitic fauna that is also similar, closely related species may also exhibit divergent characteristics that allow them to coexist, such as in relation to some trophic traits (GUIDELLI et al., 2009). The absence of *G. spectabilis* in *T. galeatus* in this study indicates that despite the overlapping of living, feeding and environmental habits, this host did not have any contact with the infective forms of this endohelminth through trophic means. Species of Neochochloriidae in freshwater fish have life cycles involving a definitive host and an intermediate host, which may be arthropods (amphipods, ostracods, isopods or copepods). However, some
species have fish species as paratenic or definitive hosts, when they ingest an invertebrate that is an intermediate host or a small fish that serves as a paratenic host (WILSON & HUBSCHMAN, 1985; TARASCHEWSKI, 2008). Despite the low abundance of _G. spectabilis_ in _T. coriaceus_ and _T. galeatus_, these fish seem to be definitive hosts in the environment studied here. This was the first record of _G. spectabilis_ for _T. coriaceus_ and _T. galeatus_.

Trachelyopterus coriaceus and _T. galeatus_ showed similar low levels of infection by larvae of _Contracaecum_ sp. These larvae are anisakid with parasitic specificity and, during their larval stage; their primary hosts are microcrustaceans (MORAVEC, 2009; MOREIRA et al., 2009). In the adult phase, piscivorous birds are their definitive hosts and fish are paratenic hosts (MORAVEC, 2009). The levels of infection due to larvae of _Cystidicoides_ sp. were higher in _T. galeatus_ than in _T. coriaceus_, thus indicating that _T. galeatus_ had greater contact with the infective forms of this endohelminth. In Brazil, only _Cystidicoides fischeri_ Travassos, Artigas and Pereira, 1928, and _Cystidicoides izekshohni_ Fabio, 1982, are known to parasitize different species of fish (LUQUE et al., 2011). For _Cystidicoididae_, species of crustaceans are the intermediate hosts and fish are paratenic or definitive hosts during their life cycle. However, the adult forms of these parasites occur in adult piscivorous fish, which are the definitive hosts (MORAVEC, 2007). Therefore, the presence of larvae of _Cystidicoides_ sp. indicates that adults of _T. coriaceus_ and subadults of _T. galeatus_ are paratenic hosts for this nematode in the ecosystem of this study.

Daddytremoides parauchenipteri, a digenean that was originally described in _T. galeatus_ from Argentina (LUNASCHI, 1989), showed similar levels of infection for _T. coriaceus_ and _T. galeatus_ in the present study. This species of Cladorchidae had not previously been reported as parasitizing other species of fish in South America (KOHN et al., 2007) and therefore this was the first record of _D. parauchenipteri_ in Brazil. Moreover, this endoparasite seems to have wide geographic distribution and primary association with species of siluriform Auchenipteridae. Although the life history of _D. parauchenipteri_ is unknown, Thatcher & Jégú (1996) stated that species of Cladorchidae have a life cycle in which cercariae are released from infected snails and, through encysting on aquatic vegetation, form metacercariae that are then consumed by host fish. Given that in the ecosystem of this study, _T. coriaceus_ and _T. galeatus_ live close to aquatic vegetation; this favors encounters between these hosts and metacercariae, i.e. the infective forms of _D. parauchenipteri_. Therefore, _T. coriaceus_ and _T. galeatus_ are definitive hosts for this endohelminth, in the environment investigated here.

In summary, the richness of endoparasites with a complex life cycle in _T. coriaceus_ and _T. galeatus_ indicates that in the environment that these fish inhabit, their diet consists mainly of mollusk and crustacean species. The size and behavior of these hosts, richness of parasites and availability of infective forms of intermediate hosts that make up the diet of these Siluriformes were the main factors influencing similar parasite communities. The parasite communities of these Amazonian hosts were characterized by high prevalence and high abundance of ectoparasites, but with low diversity, prevalence and abundance of endoparasites. Furthermore, the phylogegetic and taxonomic proximity of the hosts was also a strong influence on the parasite species, once the parasite communities of these two hosts were taxonomically similar (99%). Finally, the external and internal host environment influenced the few differences in prevalence, intensity and abundance of parasites.

Acknowledgements

M. Tavares-Dias was supported by research fellowships from the Conselho Nacional de Pesquisa e Desenvolvimento Tecnológico (CNPq, Brazil).

References

