Wildlife species, Ixodid fauna and new host records for ticks in an Amazon forest area, Rondônia, Brazil

Espécies de vida selvagem, fauna ixodídica e novos registros de hospedeiros de carrapatos em uma área de Floresta Amazônica, Rondônia, Brasil

Namor Pinheiro Zimmermann1,2; André de Abreu Rangel Aguirre3,4; Vinicius da Silva Rodrigues1,3; Marcos Valério Garcia1,5*; Jansen Fernandes Medeiros4; Isabella Maiumi Zaidan Blecha1,6; Pamella Oliveira Duarte1,3; Bruno Cayeiro Cruz7; Rodrigo Casquero Cunha8; Thiago Fernandes Martins9; Renato Andreotti10

1 Laboratório de Biologia do Carrapato, Embrapa Gado de Corte, Empresa Brasileira de Pesquisa Agropecuária – EMBRAPA, Campo Grande, MS, Brasil
2 Centro Universitário da Grande Dourados, Dourados, MS, Brasil
3 Programa de Pós-Graduação em Doenças Infecciosas e Parasitárias, Universidade Federal de Mato Grosso do Sul – UFMS, Campo Grande, MS, Brasil
4 Laboratório de Entomologia Médica, Fundação Oswaldo Cruz – FIOCRUZ, Porto Velho, RO, Brasil
5 Programa de Desenvolvimento Científico Regional – DCR, Fundação de Apoio ao Desenvolvimento do Ensino, Ciência e Tecnologia – FUNDECT, Governo do Estado de Mato Grosso do Sul, Campo Grande, MS, Brasil
6 Programa de Pós-Graduação em Ciência Animal, Universidade Federal de Mato Grosso do Sul – UFMS, Campo Grande, MS, Brasil
7 Programa de Pós-Graduação em Patologia Animal, Departamento de Patologia Veterinária, Faculdade de Ciências Agrárias e Veterinárias – FCAV, Universidade Estadual Paulista – UNESP, Jaboticabal, SP, Brasil
8 Programa de Pós-Graduação em Biotecnologia, Núcleo de Biotecnologia, Centro de Desenvolvimento Tecnológico – CD Tec, Universidade Federal de Pelotas – UFPEL, Pelotas, RS, Brasil
9 Departamento de Medicina Veterinária Preventiva e Saúde Animal, Faculdade de Medicina Veterinária e Zootecnia, Universidade de São Paulo – USP, São Paulo, SP, Brasil
10 Embrapa Gado de Corte, Empresa Brasileira de Pesquisa Agropecuária – EMBRAPA, Campo Grande, MS, Brasil

Received October 27, 2017
Accepted March 03, 2018

Abstract

The objective of this work was to evaluate the diversity of ticks associated with free-living animals and to investigate new host records for ticks. Ticks were collected from animals rescued during the flood of the Jamari River in the municipality of Ariquemes, state of Rondônia, North Region of Brazil. A total of 39 animals were captured, out of which 10 were amphibians, 19 were reptiles and 10 were mammals. A total of 127 ticks of the \textit{Amblyomma} genus were collected from these animals, distributed among seven species: \textit{Amblyomma dissimile}, \textit{Amblyomma geayi}, \textit{Amblyomma humerale}, \textit{Amblyomma longirostre}, \textit{Amblyomma nodosum}, \textit{Amblyomma rotundatum} and \textit{Amblyomma varium}. In addition, one specimen of \textit{Rhipicephalus (Boophilus) microplus} was collected. Among these specimens, 85 were adults and 42 were nymphs, with \textit{A. rotundatum} being the most prevalent species. An \textit{Amblyomma} spp. larva was also collected from a lizard (\textit{Uranoscodon superciliosus}), and one \textit{Amblyomma calcaratum} and one \textit{Amblyomma dubitatum} were recovered from the environment, thus totaling 130 ticks. Among the Ixodidae collected from different hosts, we provide the first report for the species \textit{A. rotundatum} parasitizing \textit{Rhinella major}, \textit{U. superciliosus}, \textit{Leptophis ahaetulla}, \textit{Chironius multiventris}, and \textit{Mastigodryas boddaerti}, as well as of \textit{A. humerale} parasitizing \textit{U. superciliosus}, \textit{A. geayi} parasitizing \textit{Choloepus didactylus}, and \textit{Rhipicephalus (B.) microplus} parasitizing \textit{Alouatta pigra}.

Keywords: New hosts, tick fauna, wild animals.

Resumo

O objetivo deste trabalho foi avaliar a diversidade de carrapatos associados à animais de vida livre e investigar novos registros de hospedeiros. Coletas foram feitas em animais resgatados durante a cheia do Rio Jamari, localizado no município de Ariquemes, estado de Rondônia, Região Norte do Brasil. Um total de 39 animais foi capturado, dos quais dez eram anfíbios, 19 eram répteis e dez eram mamíferos. 127 carrapatos do gênero \textit{Amblyomma} foram coletados desses animais, distribuídos em sete espécies: \textit{Amblyomma dissimile}, \textit{Amblyomma geayi},
Introduction

The Rondônia state, located in the North Region of Brazil, possesses wide reserves of natural Amazon forest, as well as many degraded areas. This state has been the focus of several tick-related studies, putting it in a prominent position since 34 (52%) of the 65 species in the country had already been catalogued here by 2014 (MARTINS et al., 2014). However, the *Amblyomma sculptum* Berlese, 1888 species was recently reported for the first time in Rondônia, bringing the total to 35 species in the state (MARTINS et al., 2016). Although an already large number of Ixodidae species have been published, that number will tend to increase due to new discoveries. Notably, reports regarding Brazilian tick fauna in recent years have been gradually increasing for both the Ixodidae family and Argasidae families. Brazil today has 71 tick species, with 46 belonging to the Ixodidae family and 25 belonging to the Argasidae family (MARTINS et al., 2014, 2016; BARROS-BATTESTI et al., 2015; KRAWCZAK et al., 2015; LABRUNA et al., 2016; WOLF et al., 2016; MUÑOZ-LEAL et al. 2017).

Many of these ectoparasites have been getting closer to and interacting more frequently with domestic animals and, consequently, human beings. Because of this interaction, current research studies have focused on Ixodidae populations as well as their interaction with hosts and the environment since these ticks have the vectorial capacity to transmit agents that can cause diseases in human beings (LABRUNA et al., 2005, 2010; MARTINS et al., 2014).

Interventions in natural environments provide favorable conditions for infectious diseases due to both human interference, such as deforestation, and the constant changes made by man with the construction of roads, barrages, agriculture, and other activities (PATZ et al., 2004). Some tick species in Brazil, mainly from the *Amblyomma* genus, are pathogen vectors and are directly involved in the transmission of infectious agents to human beings, including spotted fever (Brazilian Spotted Fever) caused by bacteria of the genus *Rickettsia* (LABRUNA et al., 2011; OGRZEWALSKA & PINTER, 2016).

The objective of this study was to identify the tick fauna on wild animals captured in a degraded area and to investigate new records of tick-host relationships.

Material and Methods

Location and period of collection

The capture of hosts was performed during the rescue of wild animals from the flood of the Jamari River after the construction of the Jamari Hydroelectric Central (PCH – Jamari) (10° 53’ 7” S and 61° 57’ 6” W), located in the municipality of Ariquemes, state of Rondônia, North Region of Brazil. The captures started in the beginning of November 2014 and lasted until February 2015.

Animal capture

All animals were captured and physically contained according to the methods in Rodrigues et al. (2016) before being transported to the wild animal triage center located near PCH - Jamari. The animal capture, triage, and translocation were executed by a team hired for the task and composed of field workers, biologists and veterinarians with the necessary technical abilities. During triage, each animal was identified by species, sex and weight. Afterwards, tick collections were performed.

Collection, identification and processing of ticks

Ticks were collected during the clinical examination and inspection of captured animals. The parasites were removed from hosts by holding ticks by their bodies and applying force against the host, turning the tick body 90° until the hypostome was completely removed from the skin. Afterwards, they were put in plastic receptacles with pierced covers for subsequent identification.

Later, the ticks were taken to the laboratory and identified with a stereomicroscope using dichotomous keys from Onofrio et al. (2006) for adults and Martins et al. (2010) for nymphs. For confirmation of the species, the *Amblyomma humerale* Koch, 1844 nymph was subjected to DNA extraction and sequencing, as this specimen had breakdowns that made identification by dichotomous keys difficult. The ticks were deposited into the collection of the Tick Laboratory, Embrapa Gado de Corte, Campo Grande, Mato Grosso do Sul, Brazil. (Access numbers: 28-30, 35).

DNA extraction, PCR and sequencing

Tick DNA was extracted using a protocol based on guanidine isothiocyanate and phenol/chloroform extraction (SANGIONI et al., 2005 - adapted). The DNA was quantified with a spectrophotometer, and its integrity was verified by agarose gel electrophoresis at 0.88%. PCR using a 16S rDNA primer for molecular identification of the *A. humerale* species was performed according to Mangold et al. (1998).

The product was analyzed on a 1.5% agarose gel, stained with ethidium bromide, visualized, and photographed under ultraviolet light exposure.
Results

A total of 39 animals were captured (Table 1), including 10 amphibians (eight *Rhinella marina*, and two *Rhinella major*), 19 reptiles (14 *Uranoscodon superciliosus*, as well as *Bothrops atrox*, *Leptophis ahaetulla*, *Chironius multiventris*, *Mastigodryas boddartii* and *Boa constrictor* species, with one specimen each) and 10 mammals (three specimens of *Choloepus hoffmanni* and three *Choloepus didactylus*, two specimens of *Tamandua tetradactyla*, and one specimen each of *Coendou prehensilis* and *Alouatta puruensis*).

A total of 127 ticks from the *Amblyomma* genus were collected from these animals, distributed among seven species (disregarding one *Amblyomma larva*, the species of which could not be identified): *Amblyomma dissimile* Koch, 1844, *Amblyomma geayi* Neumann, 1899, *A. humerale*, *Amblyomma longirostre* (Koch, 1844), *Amblyomma nodosum* Neumann, 1899, *Amblyomma rotundatum* Koch, 1884 and *Amblyomma varium* Koch, 1844. Additionally, one specimen of *Rhipicephalus (Boophilus) microplus* (Canestrini, 1888) was also collected.

During the field activities, the authors found one specimen of *Amblyomma calcaratum* Neumann, 1899 and one of *Amblyomma dubitatum* Neumann, 1899 in free-living stages in the environment. A total of 87 adult ticks (10 males and 77 females), 42 nymphs and one larva were collected. Among the nymphs, only one was from the *A. humerale* species, while the rest were *A. rotundatum*. Among adults, the most abundant species was *A. rotundatum*, with 59 specimens, followed by *A. nodosum*, *A. geayi*, *A. longirostre* and *A. varium*, with 13, five and three samples each, respectively. Only one specimen of *A. calcaratum*, one *A. dissimile*, one *A. dubitatum*, and one *R. (B.) microplus* were present, reaching a total of 130 specimens (Table 1).

The present study reports, for the first time, the parasitism by *A. rotundatum* of *R. major*, *U. superciliosus*, *L. ahaetulla*, *C. multiventris* and *M. boddartii*, as well as *A. humerale* parasitizing *U. superciliosus*, *A. geayi* parasitizing *C. didactylus*, and *R. (B.) microplus* parasitizing *A. puruensis*.

BLAST analysis showed that the obtained *A. humerale* DNA sequence is close (99% identity) to the corresponding sequence of *A. humerale* from the state of Amazonas, North Region of Brazil (GQ891952), as well as 95% similar to the *Amblyomma sabanerae* Stoll, 1894 sequence from Costa Rica (KF702455), as illustrated in Figure 1.

Phylogenetic analysis indicated that the specimens collected from Amazon forest area, Rondônia, Brazil, correspond to *A. humerale*

Table 1. Number, instars and tick species identification include of the genera *Amblyomma* and *Rhipicephalus* collected from wild animals rescued from a forest area in the municipality of Ariquemes, Rondônia, Brazil.

<table>
<thead>
<tr>
<th>Species of captured animals</th>
<th>Number of captured animals</th>
<th>Tick species</th>
</tr>
</thead>
<tbody>
<tr>
<td>Amphibians</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Rhinella marina</td>
<td>8</td>
<td>27N and 50F A. rotundatum</td>
</tr>
<tr>
<td>Rhinella major</td>
<td>2</td>
<td>2F A. rotundatum</td>
</tr>
<tr>
<td>Reptiles</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Uranoscodon superciliosus</td>
<td>14</td>
<td>1L Amblyomma spp.; 7N and 6F A. rotundatum; 1N A. humerale</td>
</tr>
<tr>
<td>Bothrops atrox</td>
<td>1</td>
<td>A. rotundatum</td>
</tr>
<tr>
<td>Leptophis ahaetulla</td>
<td>1</td>
<td>3N A. rotundatum</td>
</tr>
<tr>
<td>Chironius multiventris</td>
<td>1</td>
<td>3N A. rotundatum</td>
</tr>
<tr>
<td>Mastigodryas boddartii</td>
<td>1</td>
<td>1N A. rotundatum</td>
</tr>
<tr>
<td>Boa constrictor</td>
<td>1</td>
<td>1F A. dissimile</td>
</tr>
<tr>
<td>Mammals</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Choloepus hoffmanni</td>
<td>3</td>
<td>1F and 1M A. geayi; 1F A. varium</td>
</tr>
<tr>
<td>Choloepus didactylus</td>
<td>3</td>
<td>1M and 2F A. geayi; 1M and 1F A. varium</td>
</tr>
<tr>
<td>Tamandua tetradactyla</td>
<td>2</td>
<td>4M and 9F A. nodosum</td>
</tr>
<tr>
<td>Coendou prehensilis</td>
<td>1</td>
<td>3M A. longirostre</td>
</tr>
<tr>
<td>Alouatta puruensis</td>
<td>1</td>
<td>1F R. (B.) microplus</td>
</tr>
<tr>
<td>Free-living stages</td>
<td>-</td>
<td>1F A. calcaratum; 1F A. dubitatum</td>
</tr>
<tr>
<td>Total</td>
<td>39</td>
<td>130</td>
</tr>
</tbody>
</table>

M male; F female; N nymph; L larva.
Amblyomma humerale nymphs were present on all captured species of amphibians and reptiles, with reports of nymph and adult instars; however, only females were found among the adults. This is due to the characteristic fact that this species parasitizes different cold-blooded hosts and reproduces through parthenogenesis, due to the characteristic fact that this species parasitizes different species of amphibians and reptiles, with reports of nymph and adult instars; however, only females were found among the adults. This is also the first report of an A. varium, and A. geysi ticks found parasitizing sloths (C. hoffmanni and C. didactylus) in this study are associated primarily with the Xenarthra order, according to Marques et al. (2002) and Labruna et al. (2009). However, the first report of A. geysi parasitism on C. didactylus was made in this study, since descriptions of this tick species on sloths refer to the C. hoffmanni, Bradyptus tridactylus, and Bradypus variegatus species (FAIRCCHILD et al., 1966; LABRUNA et al., 2009; MARTINS et al., 2013).

Amblyomma nodosum adult ticks were found parasitizing T. tetradactyla. This tick species, when in its adult phase, prefers mammals from the Xenarthra order, which includes this host species. However, immature phases are involved in bird parasitism (GUIMARÃES et al., 2001; BARROS-BATTisti et al., 2006). Witter et al. (2016) noted the presence of A. nodosum on free T. tetradactyla individuals. Different research studies have also reported adult A. nodosum present on T. tetradactyla (GARCIA et al., 2013; MARTINS et al., 2014).

Parasitism by A. longirostre adults is commonly associated with some Coendou species (GUIMARÃES et al., 2001), such as Coendou prehensilis, as registered in this study. Immature phases of A. longirostre are usually associated with bird parasitism (OGRZEWALSKA & PINTER, 2016).

This is also the first report of an R. (B.) microplus semi-engorged female parasitizing an A. pumensis. This possibly occurred accidentally, since this female tick was attached to a young A. pumensis found separated from its mother and on the ground, where it possibly contacted R. (B.) microplus. Other Ixodidae species, especially Amblyomma sp. ticks, were reported parasitizing animals of the Alouatta genus (LABRUNA et al., 2002b; MARTINS et al., 2006; LAVINA et al., 2011; MARTINS et al., 2013, 2015). Labruna et al. (2002b) also rescued animals from the flood caused by the construction of the Porto Primavera hydroelectric plant and reported the presence of 18 A. sculptum nymphs parasitizing three Alouatta caraya.

Other studies have reported the presence of A. aureolatum (Pallas, 1772) on Alouatta guariba specimens (MARTINS et al., 2006), A. australatum and A. odale Kock, 1844 on Alouatta clamitans (LAVINA et al., 2011) and parasitism by A. parkeri Fonseca e Aragão, 1952 and A. sculptum nymphs of A. guariba (MARTINS et al., 2013, 2015). As observed in the present study, which reported a young debilitated animal on the ground, other studies show that parasitism by Ixodidae of primates of the Alouatta genus are usually associated with the presence of stressful conditions for these animals, either because they are hurt, young, or due to their permanent residence on the ground caused by some physical debility (MARTINS et al., 2006; LAVINA et al., 2011; MARTINS et al., 2015).
This study observed and presented Ixodidae fauna parasitizing several animal species in a region of the state of Rondônia, in the North Region of Brazil. *Amblyomma rotundatum* was described, for the first time, parasitizing amphibians and reptiles of the *R. major*, *U. spectabilis*, *L. abacteulla*, *C. multiventris* and *M. boudreaux* species. Also unprecedented were the parasitism reports of *A. humeralae* on *U. spectabilis* lizards, *A. gezzyi* on *C. didactylus* sloths, and *R.* (*B.* microplus) on *A. puruensis* monkeys.

Acknowledgements

The research was supported by Coordenação de Aperfeiçoamento de Pessoal de Nível Superior - CAPES, Conselho Nacional de Desenvolvimento Científico e Tecnológico - CNPq, Fundação de Apoio ao Desenvolvimento do Ensino, Ciência e Tecnologia do Estado de Mato Grosso do Sul - FUNDECT-MS, Governo do Estado de Mato Grosso do Sul, Fundação de Amparo a Pesquisa do Estado de Rondônia - FAPERO-RO and Fiocruz – Rondônia.

References

Martins TF, Barbieri ARM, Costa FB, Terrassini FA, Camargo LMA, Peterka CRL, et al. Geographical distribution of *Amblyomma cajennense*

