Original article

Physical activity level and physical performance in the 6-minute walk test in women with fibromyalgia

Chris Andreissy Breda, André Luiz Félix Rodacki, Neiva Leite, Diogo Homann, Suelen Meira Goes, Joice Mara Facco Stefanello

*Centre for Motor Behaviour Studies (CECOM), Postgraduate Program in Physical Education (PPGEDF), Universidade Federal do Paraná (UFPR), Curitiba, PR, Brazil

Research Nucleus on Quality of Life, PPGEDF, UFPR, Curitiba, PR, Brazil

Psychophysiology of Exercise and Sport Research Laboratory, PPGEDF, UFPR, Curitiba, PR, Brazil

ARTICLE INFO

Introduction: Fibromyalgia (FM) is a chronic pain condition that causes impaired functional capacity, possibly through the adoption of sedentary behaviour. However, little is known regarding physical activity level and its relationship with physical performance in women with FM.

Objectives: To compare physical activity level, assessed using the International Physical Activity Questionnaire (IPAQ), and physical performance, measured using the six-minute walk test (6MWT), in women with and without FM and to examine the possible relationships between physical activity level and physical performance in both groups.

Methods: The study included 30 women diagnosed with FM (patients) and 28 healthy women (controls) who answered the IPAQ and performed the 6MWT.

Results: Patients and controls self-reported similar physical activity level, considering both the total score and all IPAQ subcomponents (P > 0.05). However, the FM patients had worse physical performance in the 6MWT (patients, 441.8 ± 84.1 m vs. controls, 523.9 ± 80.3 m; P < 0.01). There were no relationships between the distance walked in the 6MWT and the IPAQ variables for the control group. However, the distance walked by patients in the test showed a significant correlation (P < 0.05) with the total score and the subcomponents transport, household activities, and physical activities of moderate intensity in the IPAQ.

Conclusions: Women with FM had physical activity levels similar to women without FM but exhibited worse physical performance. This functional impairment may be related to the lifestyle adopted because there was a relationship between physical activity level and physical performance in those patients.

© 2013 Elsevier Editora Ltda. All rights reserved.
Nível de atividade física e desempenho físico no teste de caminhada de 6 minutos em mulheres com fibromialgia

**Resumo**

Introdução: A fibromialgia (FM) é uma condição dolorosa crônica que causa comprometimento da capacidade funcional, possivelmente pela adoção de um comportamento sedentário. No entanto, pouco se sabe sobre o nível de atividade física (NAF) e sua relação com o desempenho físico em mulheres com FM.

Objetivos: Comparamos o NAF, avaliado por meio do International Physical Activity Questionnaire (IPAQ), e o desempenho físico, mensurado pelo teste de caminhada de 6 minutos (TC6) de mulheres com e sem FM, além de investigar possíveis relações entre NAF e desempenho físico em ambos os grupos.

Métodos: Participaram do estudo 30 mulheres com o diagnóstico de FM (pacientes) e 28 mulheres saudáveis (controles) que responderam ao IPAQ e realizaram o TC6.

Resultados: Pacientes e controles autorrelataram similar NAF, considerando tanto o escore total quanto todos os subcomponentes do IPAQ (P > 0,05). Porém, as pacientes apresentaram pior desempenho físico no TC6 (pacientes: 441,8 ± 84,1 m vs. controles: 523,9 ± 80,3 m; P < 0,01). Não existiram relações entre a distância caminhada no TC6 e as variáveis do IPAQ para o grupo controle. Entretanto, para as pacientes, a distância caminhada no teste apresentou correlações significativas (P < 0,05) com o escore total e com os subcomponentes transporte, atividades domésticas e atividades físicas de intensidade moderada do questionário IPAQ.

Conclusões: Mulheres com FM apresentaram NAF similar às mulheres sem FM, mas pior desempenho físico. Esse comprometimento funcional pode estar relacionado ao estilo de vida adotado, uma vez que houve relação entre o NAF e o desempenho físico nessas pacientes.
9.9 kg/m². The exclusion criteria established were the following: heart diseases; untreated lung diseases; other rheumatic conditions; osteoporosis; severe musculoskeletal alterations; and the use of devices to perform their daily tasks. These data were gathered through self-reporting by study subjects and by monitoring their medical records. Four patients evaluated were excluded: three for not adequately filling in the IPAQ and one because she interrupted the 6MWT before completing the test. Thus, data from 30 patients were analysed. A total of 28 women who were university staff and did not have an FM diagnosis were invited to comprise the control group. The selection of the control group followed the same inclusion and exclusion criteria as the patients.

After signing the informed consent form, all study subjects underwent anthropometric assessments to measure the body mass (digital scale) and height (wall-mounted stadiometer), according to the Anthropometric Standardization Reference Manual,¹⁷ to assess their BMI. Subsequently, they filled in the International Physical Activity Questionnaire (IPAQ), long version, aimed at estimating their usual physical activity level.¹⁸ This tool generates data regarding the frequency and length of activities, considering the last seven days, and measures the physical activity level related to various types of activities (work, transport, household chores, leisure) or different intensities (walks and physical activities with moderate or vigorous intensity).

The physical performance of study subjects was measured using the 6MWT. The 6MWT was conducted in a 30-metre-long flat hallway, according to the American Thoracic Society guidelines.¹⁴ Each study subject performed one test, and the distance walked was recorded in metres at the end of each test.

For the statistical analyses, the Shapiro-Wilk test was initially used to assess data normality, and the Levene test was used to assess the homogeneity of variances when comparing both groups. Pearson’s correlation and independent t tests were used for parametric data, and the Spearman’s Correlation and Mann-Whitney U test were used for non-parametric data. The data were analysed using the STATISTICA software (STATSOFT Inc., version 7.0). The level of significance was set at P < 0.05.

Table 1 shows the general sample characteristics. The two groups were similar regarding age and BMI. A comparison of the physical activity level between the patients and the healthy controls is shown in Table 2. No significant differences were found for either overall physical activity level or the IPAQ subcomponents, indicating that the groups were similar with respect to active behaviour.

Correlation analyses were performed, and no significant correlations were found in the patients for the variable distance in the 6MWT and the variables age (r = −0.11; P = 0.54) or BMI (r = −0.21; P = 0.25). The correlation analyses performed between the distances walked in the 6MWT and the variables related to physical activity are shown in Table 3. No significant correlations were found in the control group. However, there was a positive correlation in the FM group between the distance walked and the time spent on activities related to active walking as a means of commuting, household activities, activities that require moderate intensities and overall

Table 1 - Sample demographic and anthropometric characteristics.

<table>
<thead>
<tr>
<th>Variable</th>
<th>Controls (n = 28)</th>
<th>Patients (n = 30)</th>
<th>P</th>
</tr>
</thead>
<tbody>
<tr>
<td>Age (years)</td>
<td>40.7 ± 6.3</td>
<td>42.6 ± 5.8</td>
<td>0.17</td>
</tr>
<tr>
<td>Body mass (kg)</td>
<td>70.6 ± 13.1</td>
<td>72.4 ± 9.3</td>
<td>0.67</td>
</tr>
<tr>
<td>Height (cm)</td>
<td>160.7 ± 6.3</td>
<td>158.9 ± 5.3</td>
<td>0.25</td>
</tr>
<tr>
<td>BMI (kg/m²)</td>
<td>27.2 ± 5.1</td>
<td>28.7 ± 3.9</td>
<td>0.21</td>
</tr>
</tbody>
</table>

BMI, body mass index.
The data are expressed as the mean ± standard deviation. The independent t test and the Mann-Whitney U test were used to compare the groups when the variables showed parametric and nonparametric distribution, respectively.

Table 2 - The comparison of the level of physical activity between patients and healthy controls.

<table>
<thead>
<tr>
<th>Activity</th>
<th>Controls (n = 28)</th>
<th>Patients (n = 30)</th>
<th>P</th>
</tr>
</thead>
<tbody>
<tr>
<td>IPAQ (total)</td>
<td>710.5 ± 619.7</td>
<td>677.8 ± 632.7</td>
<td>0.15</td>
</tr>
<tr>
<td>Work</td>
<td>145.1 ± 239.3</td>
<td>58.6 ± 103.1</td>
<td>0.94</td>
</tr>
<tr>
<td>Transport</td>
<td>88.2 ± 85.7</td>
<td>71.8 ± 54.1</td>
<td>0.71</td>
</tr>
<tr>
<td>Domestic</td>
<td>435.5 ± 505.7</td>
<td>489.0 ± 600.5</td>
<td>0.55</td>
</tr>
<tr>
<td>Leisure</td>
<td>41.6 ± 74.6</td>
<td>58.3 ± 87.8</td>
<td>0.12</td>
</tr>
<tr>
<td>Walk</td>
<td>149.8 ± 97.0</td>
<td>130.3 ± 121.4</td>
<td>0.54</td>
</tr>
<tr>
<td>Moderate PA</td>
<td>552.5 ± 608.8</td>
<td>519.5 ± 610.5</td>
<td>0.62</td>
</tr>
<tr>
<td>Vigorous PA</td>
<td>8.2 ± 29.6</td>
<td>28 ± 73.9</td>
<td>0.60</td>
</tr>
</tbody>
</table>

PA, physical activity.
The data are expressed as the mean ± standard deviation, median and range (minimum and maximum). Adopted measuring unit = minutes/week. The total level of physical activity (total International Physical Activity Questionnaire, IPAQ) is generated by the sum of the subcomponents (work + transport + household + leisure) or the sum of the types of intensities (walking + moderate-intensity physical activity + vigorous-intensity physical activity). The independent t test and the Mann-Whitney U test were used to compare the groups when the variables showed parametric and nonparametric distribution, respectively.
patients and healthy controls.4 However, it should be noted that the measurement and quantification of physical activity levels in patients with FM is still little explored, which precludes further discussions on the topic.

Regardless of the method used to quantify physical activity levels, encouraging patients with FM towards regular physical activity has been essential. Considering that physical exercise as non-pharmacological treatment for that population22 may help improve or maintain patients’ physical condition, its regular practice may presumably provide a greater feeling of overall wellness23 improving other symptoms associated with FM. Scientific evidence has shown the benefits, particularly of aerobic exercise on functional capacity and possibly on pain in FM.24 Fontaine et al.25 proposed a study in which FM patients were encouraged to increase the level of usual physical activity through several short sessions of moderate-intensity activities throughout the day, most days of the week, to improve FM symptoms. The intervention group reported decreased pain intensity compared with the control group (patients who were not encouraged to exercise). In the following study, the same researchers26 showed that the benefits acquired from that program were not sustained over time because the intervention group significantly decreased their physical activity level a few months after the intervention. Recent evidence involving the evaluation of physical activity and the central nervous system mechanism responsible for the processing and modulation pain through magnetic resonance imaging suggests that patients who are physically active and avoid sustained periods of sedentary behaviour appear to more adequately retain this ability to modulate pain than those less active or who spend most of their time in sedentary activities.6,20 These data indicate that the regular practice of physical activity is important to promote improvements in the manifestations observed in FM. The habit of adopting an active lifestyle is perceived and emphasised by the patients themselves. In a survey conducted online on the patients’...
level of knowledge regarding the disease, the questions with the highest rates of correct answers addressed issues related to physical activity and/or exercise.27

The comparison of physical performance in both groups evaluated in the present study showed that the FM group had worse physical performance than the healthy control group. The distance walked during the 6MWT for patients and controls and the magnitude of the difference found between groups were similar to those found in other studies conducted in Brazil28,29 and abroad.30,31 Furthermore, both groups had similar age, BMI and physical activity levels, which indicates that those factors had no direct effect on the performance in the 6MWT in one group or the other. Conversely, Mann et al.32 found a direct relationship between the distance walked in the 6MWT and lower limb muscle strength in women with FM. Recently, Homann et al.33 showed that women with FM report a greater pain intensity and perception of effort while performing the 6MWT than healthy women at all times during the test. Exacerbation of pain and effort, especially at the end of the test, was also identified in women with FM,34 which indicates that those factors may limit performance in the 6MWT.

Various factors may presumably affect physical and functional capacity in certain conditions where there is health limitation including age, BMI, physical and psychological factors and specific characteristics of the disease. In the case of FM, the main manifestations observed and the disease severity show a relationship with physical performance compromise and the self-reporting of performing daily tasks.11,34,35 However, behavioural factors that may be changed – including the effect of physical activity levels or a patient’s status as sedentary, slightly or very active with respect to physical performance – are poorly addressed in FM patients.

In the present study, although women with and without FM exhibited no differences regarding the level of total physical activity and different types and intensities of activities performed, the group of patients with FM showed reduced physical performance. However, factors including age and BMI showed no significant correlations with the distance walked during the 6MWT for either patients or controls. Thus, those two variables, which often limit performance on 6MWT and are used in different equations to predict the distance walked, apparently do not limit the test performance. The analysis of possible relationships between physical activity levels and distance walked showed no significant correlations in the control group. However, significant correlations, from weak to moderate, were found in the FM patient group. These data suggest that the time spent weekly on physical activities including locomotion and household activities, activities requiring moderate intensities and the total level of physical activity may be related to physical performance in the 6MWT in patients with FM; that is, low performance in the 6MWT may be indicative of reduced physical activity levels. Jones et al.34 also found that the level of physical activity affected the performance in the 6MWT in patients with FM.

The main limitation of the present study was the use of self-reported data to measure the level of physical activity. However, more refined and precise techniques remain an obstacle for that purpose. Furthermore, other conditions typical of FM, which could generate further data and establish more accurate relations on what was evaluated in the present study, were not evaluated.

In summary, the findings of the present study showed that women with FM self-reported physical activity levels similar to healthy women. However, the patients had worse physical performance in the 6MWT, which may have been affected by the physical activity levels because there were significant correlations for distance walked in the test with some types of activities and the total level of physical activity reported by those patients. This information may be useful when prescribing a treatment focused on maintaining and improving physical fitness to avoid progressive losses of physical function in patients with FM.

Acknowledgments

Thanks to the Brazilian Federal Agency for the Support and Evaluation of Graduate Education (Coordenação de Aperfeiçoamento de Pessoal de Nível Superior, CAPES) for granting the scholarships.

Ethics Committee

Human Research Ethics Committee of the Department of Health Sciences, Federal University of Paraná (Universidade Federal do Paraná, UFPR), Curitiba, Paraná. CEP/SD log number: 1161.086.11.06.

Funding

Brazilian Federal Agency for the Support and Evaluation of Graduate Education (Coordenação de Aperfeiçoamento de Pessoal de Nível Superior, CAPES) for granting the scholarships.

Conflicts of interest

The authors declare no conflicts of interest.

References


