Noninvasive Mechanical Ventilation in Patient with Pneumocystis Jirovecii Pneumonia. Case Report*

VENTILAÇÃO MECÂNICA NÃO-INVASIVA EM PACIENTE COM PROVÁVEL PNEUMONIA POR PNEUMOCYSTIS JIROVECII. RELATO DE CASO

Élida Mara Carneiro¹, Renata Zago Maneira², Eduardo Rocha³

SUMMARY

BACKGROUND AND OBJECTIVES: Pneumocystis jirovecii pneumonia has been one of the most common diseases and life-threatening infectious complications in acquired immunodeficiency syndrome patients. The objective of the case report was to present a patient with probable diagnosis of Pneumocystis jirovecii pneumonia who received noninvasive positive pressure ventilation.

CASE REPORT: A female patient, 25 years old, with probable diagnosis of Pneumocystis jirovecii pneumonia received noninvasive positive pressure ventilation.

CONCLUSIONS: All respiratory parameters progressively improved in the first five days. Results suggest the efficacy of this support to improve oxygenation, to revert hypoxemia and to prevent orotracheal intubation.

Key Words: Acquired immunodeficiency syndrome, Noninvasive ventilation, Pneumocystis jirovecii.

RESUMO

JUSTIFICATIVA E OBJETIVOS: A pneumonia por Pneumocystis jirovecii tem sido uma das doenças mais comuns e uma complicação infecciosa fatal em pacientes com síndrome da imunodeficiência adquirida. O objetivo deste estudo foi apresentar uma paciente com provável diagnóstico de pneumonia por Pneumocystis jirovecii que recebeu ventilação não-invasiva com pressão positiva.

RELATO DO CASO: Paciente do sexo feminino, 25 anos, com diagnóstico provável de pneumonia por Pneumocystis jirovecii grave, recebeu ventilação mecânica não-invasiva com pressão positiva.

CONCLUSÕES: Todos os parâmetros melhoraram progressivamente nos primeiros cinco dias. Os resultados sugeriram a eficácia desta medida para otimizar a oxigenação, reverter a hipoxemia e prevenir a intubação traqueal.

Unitermos: Pneumocystis jirovecii, síndrome da imunodeficiência adquirida, ventilação não-invasiva.

INTRODUCTION

The acquired immunodeficiency syndrome (AIDS) is now one of the main risk factors for the development of pneumonia by Pneumocystis jirovecii, especially when CD4 lymphocytes levels are below 200 cel/mm³. Without highly active antiretroviral treatment (HAART), about 60% to 90% of patients develop pneumonia, which in up to 60% of cases may be the first defining event. Infection occurs by inhalatory route and in most persons is asymptomatic. In patients bearers of AIDS, pneumo-
nia may be due to reactivation of the endogenous focus or exogenous re-infection. In the pathogenesis of this infection, injury of the pneumocyte I increases alveolo-capillary permeability, with consequent interstitial edema and eosinophilic foamy exudate that fills the alveoli, which explains impairment of gas exchange. These alterations lead to hypoxemia and progressive respiratory failure that may require ventilatory assistance and courses with high morbidity/mortality.

The main physiological alterations in these patients include: hypoxemia with increase of the alveolo-arterial oxygen gradient and respiratory alkalosis; decrease of the diffusion capacity suggesting alveolocapillary block and changes in pulmonary compliance as well as in vital capacity and in total pulmonary capacity comparable to that in adult acute respiratory distress syndrome (ARDS). Noninvasive positive pressure ventilation (NIPPV) is a ventilatory assistance method whereby positive pressure is applied to the patient’s airways by a mask and other interfaces without use of tracheal intubation. This procedure is currently indicated for patients with acute hypercapnic respiratory failure (ARF) or a high risk of developing it and hypoxic ARF of different etiologies.

The purpose of this study was to present a patient with a diagnosis of probable Pneumocystis jirovecii pneumonia receiving respiratory NIPPV support.

CASE REPORT

A female patient, 25 year old, admitted at the Unit of Infectious and Parasitic Disease of the Hospital Escola da Universidade Federal do Triângulo Mineiro had a diagnosis of AIDS for the past 5 years. She presented with a clinical condition characterized by dyspnea and non-productive cough associated to a fever, not measured, with several weeks of evolution. Arterial blood gas disclosed severe hypoxemia with partial oxygen pressure (PO$_2$) of 49 mmHg and chest X-ray showed bilateral, centrifuge and homogeneous interstitial infiltrate, which preserved the periphery. The CD4 count was 53 cells/mm3 and viral load of 231,189 RNA viral/mL copies. Specific treatments were started with trimethoprim/sulfamethoxazole and hydrocortisone.

During physiotherapeutic evaluation, the patient was using a Venturi mask with a fraction of inspired oxygen (FiO$_2$) of 50% and a respiratory rate (RR) of 38 bpm and oxygen saturation (SaO$_2$) of 83%.

Because hypoxemia and dyspnea showed no improvement and after previous written consent of the patient, a NIPPV with Takaoka ventilator was implemented under facial mask with the following parameters: positive end expiratory pressure (PEEP) of 10 cmH$_2$O, fraction of inspired oxygen (FiO$_2$) of 80% and support pressure (SP) of 20 cmH$_2$O. After 30 minutes of respiratory support SaO$_2$ increased to 96% and on the same day, arterial blood gas showed a moderate improvement of hypoxia with a PO$_2$ of 73 mmHg. The patient presented a progressive improvement of these parameters until the 5th day, after which an oxygen supplement (3 L/min) was added. It was administered by nasal catheter and remained for two more days with a SaO$_2$ of 95% to 97% and a PO$_2$ 80 mmHg, whereupon she was discharged from hospital (Table 1).

DISCUSSION

In recent years, use of NIPPV, has become increasingly frequent and this is in part due to publication of well controlled studies that document advantages of this type of mechanical ventilation in comparison to conventional approaches for treatment of acute respiratory failure of various etiologies.

Diagnosis of probable Pneumocystis jirovecii pneumonia in this patient was based upon the clinical course, the Roentgenographic image of the interstitial pne-

<table>
<thead>
<tr>
<th>Days</th>
<th>Oxygen Support</th>
<th>FiO$_2$</th>
<th>PEEP</th>
<th>SP</th>
<th>PO$_2$</th>
<th>SaO$_2$</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>VM</td>
<td>50%</td>
<td>-</td>
<td>-</td>
<td>49%</td>
<td>83%</td>
</tr>
<tr>
<td>1</td>
<td>NIPPV</td>
<td>80%</td>
<td>10</td>
<td>20</td>
<td>73%</td>
<td>96%</td>
</tr>
<tr>
<td>2</td>
<td>NIPPV</td>
<td>60%</td>
<td>13</td>
<td>20</td>
<td>NA</td>
<td>93%</td>
</tr>
<tr>
<td>3</td>
<td>NIPPV</td>
<td>40%</td>
<td>15</td>
<td>20</td>
<td>NA</td>
<td>95%</td>
</tr>
<tr>
<td>4</td>
<td>NIPPV</td>
<td>40%</td>
<td>15</td>
<td>10</td>
<td>80%</td>
<td>97%</td>
</tr>
</tbody>
</table>

VM: Venturi mask; NIPPV: noninvasive positive pressure ventilation; FiO$_2$: fraction of inspired oxygen; PEEP: positive end expiratory pressure; SP: support pressure; PO$_2$: Oxygen partial pressure; SaO$_2$: Oxygen saturation; NA: Not assessed.
mocyite, the alterations perceived in arterial blood gas and the diagnosis of AIDS. In view of this, since ventilatory parameters did not improve with the Venturi mask, NIPPV was implemented with a facial mask according to data in literature that substantiate its efficacy in conditions of acute respiratory failure. However no reports were found about its use in patients with Pneumocystis jirovecii pneumonia.

This type of support improved hypoxemia, that initially was of SaO$_2$ of 83% with PaO$_2$ of 49 mmHg and, after implementation of NIPPV went to SaO$_2$ 96% and PaO$_2$ 73 mmHg. This reverted the situation of acute respiratory failure, shortened the time of in-hospital stay in addition to avoiding tracheal intubation. A recent meta-analysis14 showed the impact of NIPPV on a lesser need for tracheal intubation and also on lower mortality of patients with acute respiratory failure. Such data and improvement of the materials used (masks, other interfaces and flow generating ventilators) have encouraged the use of NIPPV15.

Noninvasive positive pressure ventilation has a series of advantages in relation to invasive ventilation. It is easy to apply and remove, preserves the upper airways, warrants greater comfort to the patient and avoids the resistive work of breathing of the tracheal tube and complications of intubation itself, such as trauma of the upper airways and/or nosocomial pneumonia14,16,17. Furthermore, because ventilators and beds in the ICU in most hospitals are not readily available, this technique becomes more attractive. Results achieved in this case should foster new studies with a larger number of patients to confirm efficacy.

REFERENCES