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The geometry of the lactation 
curve based on Wood’s equation: 
a two-step prediction

ABSTRACT - Lactation records from cows of the southwestern Paraná state, Brazil, 
form the dataset of this study. We applied the information-theoretic approach to 
evaluate the ability of the nonlinear Wood, Brody, Dijkstra, and Gamma functions to 
fit to these data by employing a two-step technique based on nonlinear mixed-effects 
models and generalized linear mixed-effects models. Wood’s equation was fitted with 
the combination of a first-order autoregressive correlation structure and a variance 
function to account for heteroscedasticity. This version was the best choice to mimic 
lactation records. Some geometric attributes of Wood’s model were deduced, mainly the 
ascending specific rate from parturition to peak milk yield and the descending specific 
rate as a measure of the lactation persistence of the milk yield at peak production. Breed 
and parity order of the cows were assumed as fixed effects to obtain a reliable model 
fitting process. Regardless of breed, first-order parity cows had greater persistency 
than their older counterparts, and the greater the ascending rate of milk yield from 
the parturition to the peak, the sharper the decrease in milk yield post-peak; therefore, 
the rates (absolute values) of ascending and descending phases correlated positively. 
Nonetheless, the actual estimated values of the descending phase rates are negative. 
Wood’s equation was flexible enough to mimic either concave- and convex-shaped 
lactation profiles. The correlations between both peak milk yield and random estimates 
for β with total milk yield per lactation were positive. However, peak milk yield might not 
be the only variable used for ranking cows; the total milk yield integrates all information 
of the lactation profile through the estimated parameters of Wood’s equation. 

Keywords: dairy cattle, generalized linear mixed-effects model, lactation models, 
nonlinear mixed-effects model, nonlinear parameter estimation

1. Introduction

Lactation functions provide an elegant example to study the applicability of mathematical models 
to explain nonlinear phenomena in animal science. Scientists have proposed several mathematical 
functions to mimic milk production records over time (Brody et al., 1924; Wood, 1967; Grossman and 
Koops, 1988; Rook et al., 1993; Dijkstra et al., 1997; Pollott, 2000). Specialized dairy breeds typically 
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exhibit convex-shaped lactation profiles with ascending, peak, and descending phases (Brody et al., 
1924). Nevertheless, there are literature reports that present the difficulty of some mathematical 
models to fit atypical lactation profiles, which include profiles with an insufficient number of records 
to characterize the entire lactation, concave-shaped profiles, as well as those profiles that present 
an irregular distribution of milk records over time. Furthermore, some studies have emphasized 
that genetics, diet, parity order, season, metabolic disorders, diseases, and other environmental 
aspects are responsible for the occurrence of atypical lactation profiles (Wood, 1968, 1970, 1972, 
1976, 1980; Grossman and Koops, 1988; Olori et al., 1999; Rekik and Ben Gara, 2004; Dijkstra et al., 
2010; Hossein-Zadeh, 2016; Ahmed et al., 2019). These factors might explain why some models are 
unsuccessful in fitting some lactation records. Therefore, there is a need to investigate flexible models 
that are applicable to a wide range of situations to describe the nonlinear phenomenon of lactation. 
Among them, we can list some models that fitted lactation profiles adequately (Ferreira et al., 2015), 
i.e., the models proposed by Brody et al. (1924), Wood (1967), and Dijkstra et al. (1997), and we suggest 
the Gamma probability density function as a generalized form of Wood’s model.

The development of tools from theories of nonlinear mixed-effects models and generalized linear 
mixed-effects models (Pinheiro and Bates, 2000; Littell et al., 2006; Vonesh, 2012; Stroup, 2013) 
has provided instruments to describe several nonlinear phenomena in animal science (Zanton and 
Heinrichs, 2009; Strathe et al., 2010; Albertini et al., 2012; Araujo et al., 2015; Vieira et al., 2018, 
2020; Rohem Júnior et al., 2020). The information-theoretic approach (I-T) provides the elements 
for evaluating the quality of fit of models by aiming at their predictive powers (Buckland et al., 1997; 
Sober, 2002; Burnham and Anderson, 2004; Burnham et al., 2011a). In this regard, we can use the 
geometric properties of mathematical functions to describe lactation records through a two-step 
prediction based on the statistical methods described. This approach can yield robust predictions 
about several biological mechanisms that explain the lactation course. Interesting examples rely on 
the quantitative representation of cell proliferation and death in the mammary gland, whose effects 
on milk secretion concur for the rise, peak, and fall observed in typical lactation records (Knight 
and Peaker, 1984; Dijkstra et al., 1997; Capuco et al., 2001). The advantage of geometric functions 
and the two-step prediction based on the described statistical methods is the feasible estimation 
of parametric functions represented by geometric properties without increasing the number of 
parameters of a given model. 

Therefore, our goal was to evaluate the quality of fit of Brody, Wood, Dijkstra, and Gamma models to 
describe lactation records from different cattle breeds and parity orders of the cows and, by deducing 
and using geometric functions, to predict essential attributes of the lactation function by employing a 
generalized two-step prediction technique.

2. Material and Methods

Lactation records from cows of the southwestern region of the Paraná state, Brazil, were used to develop 
the evaluation dataset, which was partially used in a previous study performed by our research group 
about curve fitting to lactation records of Holstein cows (Ferreira et al., 2015). Here, we used a larger 
dataset and presented descriptive statistics by breed (B) and parity order (PO) (Table 1). We used the 
entire dataset containing 6754 lactation profiles. We discarded no lactation records to challenge the 
ability of the equations studied to fit the data at hand.

2.1. Geometric attributes of Wood’s equation

Wood (1967) reparameterized the gamma probability density function to yield a nonlinear equation 
that mimics records over the lactation course of dairy cows with a satisfactory fit (Ferreira et al., 2015). 
The equation can take the form of the following expression:

μt = αtβ exp(–λt)                                                                     Eq. (1)
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The parameter μt represents an expected value, that is, a population mean about random lactation 
records over time (t, days or weeks) from one cow or, preferably, from a random sample of cows taken 
from a larger population. Parameters α, β, and λ are constants, and μt is a nonlinear function. Isolated, 
λ is a fractional rate of decline expressed as reciprocal of time units (t –1), and a formal differential 
equation (Dijkstra et al., 2005) reveals that the specific fractional rate is time-dependent, actually:

κt = μt
–1 ∙ dμt⁄dt = λ + βt –1                                                             Eq. (2)

Equation 2 represents a time trajectory instead of a single parameter that otherwise would offer a 
direct biological interpretation for both theoretical and practical purposes. In fact, λ is the asymptotic 
fractional rate for κt (lim κt = λ)

t→∞ . Therefore, Wood’s model presents some attributes revealed by analytic 
geometry that may be of use for animal scientists (Figure 1).

We choose equation 1 because of its flexibility and feasibility to mimic lactation records as demonstrated 
by several authors (Dijkstra et al., 2010; Ferreira et al., 2015; López et al., 2015; Ahmed et al., 2019). 
The geometric properties of equation 1 are nonlinear functions of its parameters. The time to peak milk 
production (tp) and peak milk production (μtp) have been already described (Wood, 1967):

tp = βλ–1 and                                                                       Eq. (3)

μtp = αtβ
p exp(–β)                                                                   Eq. (4)

These two attributes are time-independent. The inflection point (ti) of equation 1 is one of two possible 
solutions (i.e., roots) obtained by equating the second derivative of equation 1 to zero. These two 
solutions are also time-independent:

ti = (β ± β0.5) λ–1                                                                     Eq. (5)

Only the root ti > tp is valid. All parameters must be subjected to the same constraints described by 
Wood (1967). As a corollary of the parametric space for β, that is, β ≤ 1, lactation records with ascending 

Table 1 - Breeds, parity orders, number of cows (nc), number of time records (nt), mean, standard deviation (SD), 
and range limits for the dataset

Breed Parity order nc nt Mean SD Minimum Maximum

Girolando (1) 1 24 83 13.5 6.49 4.0 29.5

2 4 25 17.4 6.35 6.0 27.6

Holstein (2) 1 3166 16903 22.8 8.37 0.5 70.0

2 1502 9513 26.8 9.37 2.4 71.0

3 600 3824 28.7 9.78 2.0 69.3

4 212 1342 30.2 9.50 2.3 57.2

5 80 526 31.4 9.90 5.5 61.8

6 24 207 31.2 9.50 8.2 62.0

Jersey (3) 1 607 2720 15.2 6.21 2.0 37.5

2 199 1151 17.9 6.79 1.0 40.5

3 26 104 19.5 9.28 5.0 39.5

4 3 12 15.1 3.21 12.7 24.5

Crossbreed (4) 1 187 742 14.9 7.44 2.5 53.1

2 54 268 19.1 7.01 5.3 38.6

3 10 39 18.8 6.65 8.0 31.9

4 2 15 22.1 6.64 14.6 37.0

Brown Swiss (5) 1 35 209 19.0 7.68 3.8 38.5

2 15 95 22.7 8.58 7.5 51.0

3 4 32 22.9 10.56 7.3 46.0
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and descending phases about peak milk yield are those with a constrained parametric space, i.e. 
0 < β ≤ 1; whereas those records that show only a descending phase starting from the onset of lactation 
at parturition are those for which the parametric space is constrained to β ≤ 0 (concave profiles). 
We remind the reader that equation 1 resumes to the exponential model for β = 0. The cumulative or 
total milk production (TMμt) is the area under the curve used to describe the lactation records. Here, 
we provide an analytical solution that yields the definite integral as follows:

TMμt = ∫l
u αtβ exp(–λt)dt = –αλ–(β+1) (Γ[β + 1, uλ] – Γ[β + 1, lλ])                           Eq. (6)

Numerically, the upper limit (u) of the integral was set at 305 d, and the lower limit (l) can be a 
small value greater than zero (10–6) for numerical integration. The incomplete gamma function is 
Γ[β + 1, λt] = Γ[β + 1] – γ[β + 1, λt]. The gamma function Γ[β + 1] = ∫0

∞ tβ exp(–t)dt is a numerical result from 
a definite integral, and the lower incomplete gamma function is given by γ[β + 1, λt] = ∫0

t vβ exp(–λv)dv. 
The average milk production was computed as μ̅0,305 = TMμt⁄305.

The geometry of the function depicted in Figure 1 can yield a fractional rate constant of decline with 
reference to peak milk yield. The dashed descending line tangent to the inflection point after the time 
for peak milk yield is the geometric place defined by equation 7a:

μt = μt' + (t – t') ∙ (dμt⁄dt)ti                                                       Eq. (7a)

in which (t', μt') is the point where equation 7a crosses the tangent line to the point (tp, μtp), and (dμt⁄dt)ti 
is the value of the first derivative of equation (1) at ti (Figure 1a). The tangent to (tp, μtp) is parallel to the 
abscissa axis, i.e., μt' = μtp, and the abscissa coordinate t' can be isolated in equation 7a and solved for t = ti. 
Finally, if we divide both sides of equation 7a by μtp and manipulate signs for κd because (dμt⁄dt)ti < 0, for 
not changing the trend of equation 7a, we have the persistency trend over time (Pt) as follows:

On panel a, we displayed the whole lactation (solid line) and indicated the inflection point past peak milk yield with abscissa ti as the day at 
the inflection, and the respective expected milk production rate at the ordinate (μti). Panel b is the enlarged part from day 0 to day 72 of the 
same lactation profile. The coordinates of the points of initial milk production (μ10–6) at day 0 (t = 10–6 ≈ 0), peak milk yield (μtp) at the day of 
peak (tp), and where the tangent to the inflection point (descending dashed line) intercepts the abscissa parallel (dotted lines) that passes 
the ordinate (μt' = μtp

 ) defines the arbitrary beginning of the descending exponential phase. These two points are important to compute the 
fractional descending rate (κd). The double dotted and dashed lines mark tp, t', and ti. The ascending phase is defined by the cord that passes 
the coordinates (10–6, μ10–6) and (tp, μtp). Two dotted lines parallel the abscissa and passes through these two points also united by an ascending 
dashed line. These lines are important to define the angle δ. This angle is important to compute the fractional ascending rate (κα). The circles 
mark the coordinates on both panels. The expected function was built on parameters estimated for fifth parity order cows of the Holstein breed 
as part of our results.

Figure 1 - Geometric attributes of Wood’s model. 
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Pt = μt μtp
–1 = μt' μtp

–1 + (dμt⁄dt)ti μtp
–1 (t – t') = 1 – κd (t' – t)                             Eq. (7b)

Therefore, the specific rate constant of decline after peak milk yield arbitrarily becomes the positive 
value, as follows:

κd = –μtp
–1 (dμt⁄dt)ti                                                                Eq. (8)

The new parameter κd can be d–1 or w–1 and dependent on ti (equation 5) as an intrinsic attribute of 
equation 1. We can relate the fractional rate described by equation 8 to the phenomenon of stromal 
apoptosis in the mammary gland (Stefanon et al., 2002; Dijkstra et al., 1997, 2010). The relative rate 
of decline midway between peak milk yield and the arbitrary end point of lactation (tf = 305) is an 
additional rate computed from the parameters of Wood’s equation, namely rd = 2βλ(β – λtf)–1 – λ 
(Dijkstra et al., 2010).

Another critical factor of the lactation might be the rate of DNA proliferation in the mammary gland, 
which would be responsible for the rise in milk production after parturition (Dijkstra et al., 2010). We 
can geometrically generate a point estimator for an ascending rate of milk production by calculating  
the average milk production during the ascending phase until peak milk yield, as follows:

μ̅10–6,tp
 = (TMμt – ∫tp

305αtβ exp(–λt)dt)⁄(tp – 10–6),                                     Eq. (9)

for ∫tp
305αtβ exp(–λt)dt = –αλ–(β+1) (Γ[β + 1,305λ] – Γ[β + 1, λtp]). By computing the tangent of the δ angle 

(Figure 1b), as equation 10, we have: 

tan δ = (μtp – μt=10–6)⁄(tp–10–6),                                                   Eq. (10)

and the following ratio yields a constant, fractional ascendant rate of milk production given by 
equation 11.

κα = tan δ⁄μ̅10–6,tp                                                                 Eq. (11)

This rate can be d–1 or w–1. The rate κα can be associated with the process of cell proliferation until peak 
milk yield (Dijkstra et al., 1997, 2010). The constraint 0 < β ≤ 1 must hold for a valid κα; nonetheless, 
even though estimates for the fixed parameter β are negative, there are possible occurrences of positive 
values from the random cow effect over parameter β that may result in typical ascending-peak-
descending (convex-shaped) lactation profiles.

2.2. Brody’s lactation equation

Brody and colleagues proposed a model to mimic the standard course of milk flow of dairy cows, that 
is, the rise of milk flow after parturition and its steady decline after peak milk yield (Brody et al., 1924). 
Their model describes a biphasic phenomenon, in which the rise follows a monomolecular change and, 
simultaneously, an exponential decay follows the peak milk yield. Mathematically, the final equation 
has the form:

μt = θ1 exp(–κ1t) – θ2 exp(–κ2t)                                                  Eq. (12)

The mean μt has the same meaning as previously described, but θ1 and θ2 are scale parameters, κ1 
(d–1 or w–1) is the characteristic constant of the decline of milk production after peak milk yield (“after 
the second month” in those authors’ words), and κ2 (d–1 or w–1) is the characteristic diminishing 
constant of the rising course of lactation. It is possible that equation 12 mimics concave-shaped 
lactation profiles, but this will depend on final parametric estimates: if θ1 > 0 and θ2 ≤ 0, the equation 
resumes to an exponential decay. All derivations applicable to Wood’s equation also apply to the 
Brody’s equation.



R. Bras. Zootec., 49:e20200023, 2020

The geometry of the lactation curve based on Wood’s equation: a two-step prediction
Oliveira et al.

6

2.3. Dijkstra’s lactation equation

There is an elegant mechanistic equation based on the pool size of DNA in the cell population of the 
mammary gland during lactation. This model roots on cell proliferation and death and mimics the 
typical convex-shaped lactation profile as follows:

μt = μ0 exp(θT κ3
–1(1 – exp(–κ3t)) – κ4t)                                             Eq. (13)

Parameter μ0 (kg ∙ d–1 or kg ∙ w–1) is the theoretical initial milk production at parturition, θT (d–1 or w–1)  
represents the specific rate of cell proliferation at parturition, κ3 (d–1 or w–1) is a decay parameter, and  
κ4 (d–1 or w–1) is the specific rate of cell death. Dijkstra et al. (1997) showed several attributes of  
equation 13 as general nonlinear functions of its parameters.

2.4. The Gamma density function used as a lactation equation

The gamma probability density function (PDF) models time-to-event data (Mood et al., 1974; Stroup, 
2013). Because Wood (1967) reparametrized the gamma density function as previously mentioned, we 
believe that it is worthy evaluating this model in its original form because the properties of the gamma 
PDF may be of use to describe lactation records. We can compute the mean and variance based on this 
lactation function. The model can have the following form:

μt = α0 (λt)r–1 λ exp(–λt)⁄Γ[r]                                                     Eq. (14)

The mean μt represents the lactation course, and α and r are scale and shape parameters, respectively. 
Parameter λ (d–1 or w–1) has the same meaning as previously described. The constraints α0 > 0, r > 0, and 
λ > 0 must hold. The equivalence between equations 1 and 14 is trivial, because of β = r – 1, α = α0λr⁄Γ[r], 
and λ is the parameter in common. One can use the same rationale for Wood’s model to obtain the 
nonlinear parametric functions of interest. 

2.5. Model fitting: first-step prediction

We used the nlme function of R to fit equations 1, 12, 13, and 14 to the lactation records. The gnls and 
nlme functions belong to the nlme package (Pinheiro et al., 2017). The stochastic version of the models 
was set as follows:

ytijk = g(Θm, tijk) + etijk                                                              Eq. (15)

The record ytijk corresponds to the milk production rate (kg ∙ d–1) for the k-th cow of the i-th breed,  
during the j-th parity order, and recorded at time t. The basic nonlinear function that fits ytijk is 
g(Θm, tijk) = μtijk, ∀μt related to equations 1, 12, 13, and 14. Parameter Θm represents the vector of 
parameters of the m-th model. However, prior to the fit of the model equations, we had to group lactation 
records by the random cow and cow × parity order intersecting effects by using the groupedData 
function of nlme. The resulting formula for the grouped data was y ~ Time|cow/cpo, i.e., y is daily milk 
yield, time is t, cow and cpo are the random cow and cow × parity order (cpo) intersection. Breed (B), 
parity order (PO), and their interaction (BPO) were the fixed effects associated with each parameter of 
μt for each model evaluated.

We modeled the variance associated with the error term (etijk) according to four conditions:

σt
2 = σ2,                                                                            Eq. (16)

σt
2 = σ2 |g(Θm, tijk)|2ψ,                                                                Eq. (17)

σt
2 = σ2 (ω + |g(Θm, tijk)|ψ)2, and                                                      Eq. (18)

cov(etijk, et'ijk│um
(p)) = σ2 ϕ|tijk–t'ijk|                                                        Eq. (19)
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Parameters represent the residual variance (σ2), the power (ψ) that scales the absolute mean |g(Θm, tijk)|, 
and the assumed positive correlation parameter (0 < ϕ < 1). The model fitted with the variance function 
in equation 17 challenges the fitted one based on the traditional homoscedastic assumption described 
by equation 16. Parameter ω is the intercept of the VarConstPower function (equation 18), which 
allowed modeling the variances when |g(Θm, tijk)| = 0 or equal to a baseline or background value, and 
when the variance scales to the mean for |g(Θm, tijk)| > 0 or greater than a baseline value (Pinheiro and 
Bates, 2000; Rohem Júnior et al., 2020; Vieira et al., 2020). The fit of the model with the first-order 
autoregressive correlation structure given by equation 19 challenges the traditional assumption of 
independent time records on the same subject (Vonesh, 2012); this was accomplished by fitting the 
corCAR1 function of nlme package (Pinheiro and Bates, 2000). We also checked for possible diagonal 
and symmetric covariance structures for random effects by using the pdDiag (diagonal, D) and pdSymm 
(unstructured, U) covariance classes available in the R software (Pinheiro and Bates, 2000).

The models were initially fitted with the gnls function with no random effects introduced. Thence, 
by using the nlme function, we gradually introduced random effects (cow and cow × parity order) in 
the different fixed parameters contained in g(Θm, tijk) creating several model versions. An example is the 
introduction of the random effects over parameter λ in Wood’s equation, in sequence over parameters 
λ and β, and so on for all equations studied, which formed the different model versions. In addition, 
we assessed the quality of fit of the model solutions by using the I-T approach (Buckland et al., 1997; 
Burnham and Anderson, 2004, 2014; Burnham et al., 2011a,b; Sober, 2002). This methodology is 
based on the corrected Akaike Information Criterion as AICcm (Akaike, 1974; Sugiura, 1978; Hurvich 
and Tsai, 1989; Cavanaugh, 1997), and the derived measures ∆m (m-th Akaike differences), pm (m-th 
model probabilities), and ERm (m-th evidence ratios) computed for each m–th feasible model version 
fitted. We discarded solutions that yielded heavy-tailed 0.95 confidence intervals (0.95CI) for variance 
components of the pdDiag or pdSymm structures, as well as for parameters of the correlation structure, 
the power-of-the-mean function, or both (Pinheiro and Bates, 2000).

2.6. Generalized linear mixed-effects models: second step prediction

Only one solution satisfied all criteria for model selection (Table 2). Therefore, we obtained the 
random effects as outputs of the nlme function and computed the nonlinear geometric functions of the 
parameters. In sequence, we fitted the values for each cow and cpo for all BPO, which generated new 
random variables to be analyzed by using the GLIMMIX procedure (SAS University Edition, SAS Systems 
Inc., Cary, NC, USA). We checked the patterns of the Pearson residuals to evaluate the quality of fit of the 
model and the assumed probability density function. The model definition was as follows:

ηijk = η + Βi + Ρj + ΒΡij + ck                                                          Eq. (20)

The linear predictor is ηijk and the Greek uppercase letters represent the i-th breed (Bi), the j-th parity 
order (Ρj), and their interaction (ΒΡij). We assumed that variables could be yijk|ck ∼ Gamma(μijk, Φ) or 
yijk|ck ∼ Normal(μijk, σ2), and the random effect of cow is identically and independently distributed as 
ck ∼ Normal(0, σc

2). The Greek capital Φ is a scale parameter, and the link functions used were as follows 
(Stroup, 2013): the identity link or ηijk = μijk was used for the Normal distribution, whereas the inverse 
and log links, namely ηijk = μijk

–1 or ηijk = log (μijk), were used for the Gamma PDF. Because the Normal 
distribution and the Gamma distribution produced equal residual patterns, the alternative Gamma PDF 
was chosen as the best solution. Therefore, the Gamma was used as a generalizing distribution for 
variables in the domain (0, ∞). 

3. Results

We challenged the traditional assumption of independence and homoscedasticity among errors. 
Initially, we fitted the nonlinear models corresponding to the general mean with fixed effects of breed 
(B), parity order (PO), and their interaction (BPO), without the correlation (equation 18) among 
repeated measures, and with a simple variance function (equation 16). The gradual introduction of fixed 



R. Bras. Zootec., 49:e20200023, 2020

The geometry of the lactation curve based on Wood’s equation: a two-step prediction
Oliveira et al.

8

Table 2 - Estimate of the negative logarithm of the likelihood function (−l ̂m) and derived information criteria1 for 
the fitted Brody, Dijkstra, Gamma, and Wood nonlinear mixed-effects models

Model2 Fixed Random Variance3 −lm̂ AICcm Δm pm ERm nm

Brody PO No effect Homog 114556.3 229166.7 9301.0 → 0 → ∞ 27

Brody PO No effect VP 113542.8 227141.6 7275.9 → 0 → ∞ 28

Djikstra BPO No effect Homog 116077.2 232240.5 12374.8 → 0 → ∞ 43

Djikstra BPO No effect VP 114708.3 229504.6 9638.9 → 0 → ∞ 44

Gamma BPO No effect Homog 129032.2 258180.6 38314.9 → 0 → ∞ 58

Gamma PO α Homog 114547.9 229137.8 9272.1 → 0 → ∞ 21

Gamma PO α VP 113854.7 227753.5 7887.8 → 0 → ∞ 22

Gamma PO D(α, λ) Homog 113267.2 226580.4 6714.7 → 0 → ∞ 23

Gamma PO D(α, N) Homog 113164.7 226375.4 6509.7 → 0 → ∞ 23

Gamma PO D(α, λ) VP 112545.2 225138.5 5272.8 → 0 → ∞ 24

Wood B λ Homog 121633.9 243303.9 23438.2 → 0 → ∞ 18

Wood PO λ Homog 121281.2 242604.5 22738.8 → 0 → ∞ 21

Wood B λ VP 120137.8 240319.6 20453.9 → 0 → ∞ 22

Wood B λ VCP 120041.7 240123.4 20257.7 → 0 → ∞ 20

Wood B 𝛽 Homog 115326.5 230689 10823.3 → 0 → ∞ 18

Wood B D(α, β) Homog 114854.3 229748.6 9882.9 → 0 → ∞ 20

Wood PO β Homog 114642.8 229327.6 9461.9 → 0 → ∞ 21

Wood PO No effect VP 114539.7 229123.3 9257.6 → 0 → ∞ 22

Wood PO D(α, β) Homog 114493.4 229032.7 9167.0 → 0 → ∞ 23

Wood B β VCP 114292.6 228625.2 8759.5 → 0 → ∞ 20

Wood BPO β Homog 114092.6 228305.4 8439.7 → 0 → ∞ 60

Wood PO β VCP 113775.9 227597.8 7732.1 → 0 → ∞ 21

Wood PO D(α, β, λ) Homog 113265 226580.1 6714.4 → 0 → ∞ 25

Wood PO D(α, λ) VCP 113251.5 226553.1 6687.4 → 0 → ∞ 25

Wood BPO β VP 113193.8 226509.8 6644.1 → 0 → ∞ 61

Wood B D(β, λ) Homog 113224.4 226488.9 6623.2 → 0 → ∞ 20

Wood B D(α, β, λ) Homog 113185.9 226415.8 6550.1 → 0 → ∞ 22

Wood BPO D(α, λ) Homog 112928 225980.3 6114.6 → 0 → ∞ 62

Wood PO D(β, λ) Homog 112863.1 225772.3 5906.6 → 0 → ∞ 23

Wood BPO D(α, β, λ) Homog 112686.5 225501.3 5635.6 → 0 → ∞ 64

Wood PO No effect VP 112680.4 225404.8 5539.1 → 0 → ∞ 22

Wood BPO D(β, λ) Homog 112376.2 224876.7 5011.0 → 0 → ∞ 62

Wood B D(β, λ) VP 112193 224428.3 4562.6 → 0 → ∞ 21

Wood PO D(β, λ) VCP 111904.9 223859.7 3994.0 → 0 → ∞ 25

Wood PO D(β, λ) VP 111904.9 223857.8 3992.1 → 0 → ∞ 24

Wood B U(β, λ) Homog 111776 223596.1 3730.4 → 0 → ∞ 22

Wood BPO D(β, λ) VP 111396.7 222919.6 3053.9 → 0 → ∞ 63

Wood BPO β CORR 110917.1 221956.4 2090.7 → 0 → ∞ 61

Wood B No effect VP 110787 221620 1754.3 → 0 → ∞ 23

Wood BPO β VCP, CORR 109883.2 219892.7 26.6 1.67 ∙ 10−6 5.97 ∙ 105 63

Wood BPO β VP, CORR 109871 219866.1 0.0 ≅ 1 ≅ 1 62
1 AICcm - corrected Akaike information criterion; Δm - Akaike difference; pm - model probability; ERm - evidence ratio; and nm - number of 

parameters of the m-th model combination.
2 Model combination described by the fixed part of the model, i.e., Brody, Dijkstra, Gamma or Wood, followed by the parameter(s) to which 

random effects were ascribed with a symmetrical (U) or diagonal (D) covariance structure applied to two or more parameters, parity order 
(PO), breed (B), and breed × parity order (BPO) effects. The homogeneous variance (Homog) and residual independence correspond to the 
traditional assumptions for fitting a given model.

3 Variance functions: VarPower (VP), VarConstPower (VCP), and correlation (CORR).
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effects resulted in an improvement of the model quality of fit (Table 2). The addition of a random effect 
was a necessary improvement, as well as the introduction of a first-order autoregressive correlation 
(equation 19 or corCAR1 function, parameter ϕ) and the power-of-the-mean variance function 
(equation 17, parameter ψ). Nonetheless, the introduction of a single random effect to parameter 
β of equation 1 was the best solution after an exhaustive and careful choice among several possible 
and feasible model versions, given the data (Tables 2 and 3). Therefore, the best model in the set of 
all models studied was formed by combining equation 1 fitted with 62 parameters related to the BPO 
interactions as the fixed effects, the variance function described by equation 17, the corCAR1 function, 
and a random effect associated with the shape parameter β. We also presented the standard errors 
of the variance components of the random effects and their respective 0.95CI related to parameter β, 
namely, the standard deviations related to the cows (σcow,β), the intersecting cow × parity order (σcpo,β), 
and the residual error (σ). There is one parameter estimated from equation 17 and another parameter 
from equation 19, namely ψ and ϕ, respectively (Table 3). 

Equation 1 presented convergence in all cases. In contrast, the other models sometimes failed at 
convergence or yielded non-positive definite Hessians for variance-covariance matrices. Other problems 
observed were unreliable (heavy-tailed) confidence intervals for variance-covariance parameters, 
and we discarded those solutions as recommended by Pinheiro and Bates (2000). Equations 12 and 
13 yielded poor performances if compared with the best solution for equation 1. Only model versions 
with fixed effects were feasible for those models. 

The nonlinear geometric functions of the fixed parameters (α, β, and λ) of the best model (equation 1) and 
respective standard errors were estimated for each BPO (Table 3). The estimate obtained for parameter 
β of BPO41 was negative. The sign of the estimate of parameter β determines the shape of the lactation 
function, so that the curve was concave for β ≤ 0 (Figure 2, panel e) or presented a typical convex profile 

Table 3 - Fixed parameter estimates and respective standard errors (SE) of the chosen model according to the 
information-theoretic approach

Effect1 αtβ exp(−λt)2 SEα SEβ SEλ

BPO11 15.5t0.023 exp(−0.0021t) 3.53 0.0714 9.70 ∙ 10−4 

BPO12 16.2t0.094 exp(−0.0038t) 6.79 0.1304 1.67 ∙ 10−3 

BPO21 17.4t0.120 exp(−0.0022t) 0.31 0.0051 5.00 ∙ 10−5 

BPO22 22.5t0.111 exp(−0.0028t) 0.41 0.0055 6.20 ∙ 10−5 

BPO23 24.2t0.104 exp(−0.0028t) 0.66 0.0083 9.40 ∙ 10−5 

BPO24 26.7t0.080 exp(−0.0027t) 1.23 0.0140 1.58 ∙ 10−4 

BPO25 26.0t0.090 exp(−0.0029t) 1.66 0.0194 2.32 ∙ 10−4 

BPO26 26.8t0.074 exp(−0.0024t) 2.58 0.0283 3.43 ∙ 10−4 

BPO31 16.1t0.037 exp(−0.0017t) 0.86 0.0153 1.55 ∙ 10−4 

BPO32 16.2t0.079 exp(−0.0024t) 0.96 0.0185 2.41 ∙ 10−4 

BPO33 14.4t0.149 exp(−0.0038t) 1.96 0.0459 7.83 ∙ 10−4 

BPO34 16.7t0.046 exp(−0.0021t) 9.74 0.2171 4.74 ∙ 10−3 

BPO41 19.0t −0.041 exp(−0.0010t) 1.84 0.0289 3.18 ∙ 10−4 

BPO42 18.2t0.053 exp(−0.0024t) 1.84 0.0323 4.25 ∙ 10−4 

BPO43 23.3t0.001 exp(−0.0025t) 5.80 0.0801 1.18 ∙ 10−3 

BPO44 13.2t0.212 exp(−0.0050t) 7.24 0.1702 2.05 ∙ 10−3 

BPO51 16.5t0.096 exp(−0.0025t) 2.53 0.0444 5.03 ∙ 10−4 

BPO52 15.2t0.178 exp(−0.0041t) 2.99 0.0609 7.75 ∙ 10−4 

BPO53 18.0t0.154 exp(−0.0043t) 6.37 0.1135 1.58 ∙ 10−3 
1 Random effect standard errors (0.95 confidence intervals within parentheses) related to parameter β are as follows: cow effect, 

σcow,β = 0.0561 (0.0542, 0.0580), cow × parity order effect, σcpo,β = 0.0131 (0.0098, 0.0176), and residual standard error, σ = 0.94 (0.91, 0.97).
2 Estimates of the first-order autoregressive correlation coefficient and the power-of-the-mean variance function (0.95 confidence intervals 

within parentheses) are ϕ = 0.67 (0.66, 0.68) and ψ = 0.57 (0.56, 0.58), respectively.
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Typical ascending-peak-descending (convex) lactation profiles are presented on panels a, b, c, d, and f. The breeds shown are Holstein (i = 2) 
and Jersey (i = 3). An example of a concave, non-peak lactation profile is presented on panel e for first parity order crossbred (i = 4) cows. 
Interestingly, the same breed (crossbred cows) exhibited the two patterns.

Figure 2 - Examples of expected lactation profiles for some breed (i) × parity order (j) interactions (BPOij). 
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for 0 < β ≤ 1 (Figure 2, panels a, b, c, d, and f). A group of 385 cows presented a final negative random 
value for β; therefore, 6369 cows presented typical convex-shaped lactation profiles. The curves fitted 
with fixed parameter β ≤ 0 did not present peak milk yields as observed for convex-shaped profiles, and 
we found those results for the first and third parity orders of the crossbreds, namely BPO41 and BPO43. 
Possibly, the low number of records and cows of the third and fourth parity orders limit the strength of 
the inferences taken.

Other attributes computed from the two-step prediction, such as μtp, κα, κd, tp, etc., are presented with 
standard errors of the means and respective 0.95CI for all BPO combinations (Tables 4 and 5). Sixth 
parity order cows of the Holstein breed produced more milk per lactation than any other parity order 
for Holsteins or breeds, as one can check by comparing the confidence intervals reported. Therefore, 
Holsteins produced more milk than any other breed in the Southwest Paraná state. Fourth-, fifth-, 
and sixth-order Holstein cows presented the same peak milk yield, as demonstrated by overlapping 
confidence intervals (Table 4). The combination of the two-step statistical tools allowed the identification  
of these attributes for ranking animals within breeds and groups.

Older Holstein cows reached tp earlier than their first- and second-order counterparts did (Table 4). 
Brown Swiss cows followed the same Holstein patterns, but stayed in second place as milk producers. 
Jersey and crossbred cows did not follow the same patterns presented by Holsteins and Brown Swiss 
cows. Second- and third-order Jersey cows produced more milk than the ones of the first parity order. 
Girolando cows were low in rank, but the dataset contained only first and second parity order cows 
(Tables 1 and 4).

Holsteins presented an increasing pattern for κα from the first to the fifth parity order, but the rate 
reduced at the sixth parity order (Table 5). The same happened for Jerseys and crossbreds from first 
to the fourth lactation, whereas Brown Swiss cows showed an increase from first to the third lactation. 
The second-order Girolando cows presented an ascending rate of milk production faster than their first-
order counterparts did. Despite the β ≤ 0 estimates for BPO41 and BPO43, the convex profiles generated 
from positive random effects over the fixed β allowed the estimation of κα (Table 5).

Holsteins and Brown Swiss cows of the first parity order generally reached the time at the inflection 
point later than their older counterparts did. The exception was the sixth parity order Holsteins 
(Table 5). However, this pattern was not followed by the other breeds and the crossbred cows. In 
fact, Jersey cows increased ti as they got second and third parity orders, but fourth-order Jersey cows 
reached the inflection point earlier.

The negative fractional descending rate was higher for first parity order cows, irrespective of breed or 
crossbreed (Table 5). Older cows generally presented lower descending rates; therefore, they did not 
sustain the peak milk yield as first parity order cows did. There was a negative association between κα 
and the negative κd (ρ̂ = –0.896, P<0.001). Given the values of the SE reported, we can depict that κα and 
κd estimates for the fixed effects were precise. The relative variation for the ascending rate (100SEκα/κα) 
ranged from 0.33 to 8.97%, whereas the relative variation for κd ranged from 0.14 to 3.95%. On the other 
hand, the estimates for λ presented a greater relative variation for the fixed effects, i.e., from 2.18% 
to 221%. The introduction of a random effect on parameter λ was ineffective to reduce the AICcm 
substantially if compared with the random effect ascribed to β (Table 2). Therefore, only positive values 
occurred for λ as population estimates (Table 3). The ascending and descending rates are nonlinear 
functions of the model parameters, and the integrated information resulted in precise estimates, which 
favored the direct comparisons; isolated parameters were less precise (Tables 3 and 5).

For comparison purposes, we regressed the estimated least-squares means for rd (w–1) over the 
estimated least-squares means for κd (w–1, Eq. 8) in their original scales, i.e., both rates are characteristic 
of the descending phase after peak milk yield and are both negative. Because of r̂d and κ̂d domains 
(estimates < 0), we assumed rd normally distributed, and we estimated the simple linear regression 
by least squares (PROC REG, SAS University Edition): r̂d = 3.5 ∙ 10–3 + 1.5 ∙ κ̂d. Therefore, for the proper 
estimation of r̂d one must use –κ̂d in the preceding regression (Table 5). The SE of the intercept was 
4.11 ∙ 10–4, the SE of the slope was 3.19 ∙ 10–2, the standard error of the regression was 4.19 ∙ 10–4, and 
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the R2 = 0.9925. The estimated values for rd and κd were precise and close to each other. Regardless 
of breed, cows of first parity order presented smaller arbitrarily positive κd estimates in the first half  
of the down ranked least-squares means contained in Table 5. 

The relationships among parameters α, β, and λ with, for instance, κα, κd, tp, μtp, and TMμt are mathematical. 
Therefore, the functional relationships established among those parameters explain, by and large, 
the correlation estimates among those same parameters. Nonetheless, the Pearson correlation for 
TMμt × μtp in our study amounted to 0.982 (P<0.001) regardless of breed and parity order. This was 
done for those cows (nc = 6369) with an overall random estimate for β ∈ (0, 1). Nonetheless, the random 
β estimates for all 6754 cows presented a positive correlation with TMμt, namely 0.873 (P<0.001). 
Therefore, generally, even for cows with atypical concave profiles, the greater the random estimates of β, 
the greater the predictions for TMμt. In our data, some examples of the Pearson correlation coefficients 
were: –0.519 (P<0.001) for TMμt × κα, 0.035 (P = 0.005) for TMμt × κd, –0.828 (P<0.001) for κα × κd, and 
–0.896 (P<0.001) for κα × tp. 

4. Discussion

The technique of the nonlinear mixed-effects models allows the ranking of dairy cows within each 
breed and each parity order (ranks not shown). Therefore, one can replace the unstructured G matrix 
and ascribe a phenotypic value by associating to it genetic merits by the two-step estimation technique 
with a genomic relationship matrix in the linear mixed model (Silva et al., 2017; Soares et al., 2017). 
An extension to the generalized linear mixed-effects model is possible (Littell et al., 2006; Vonesh, 2012; 

Table 5 - Attributes1 of the lactation records obtained from the two-step estimation based on Wood’s equation: 
specific ascending rate of milk production until peak milk yield (κα, w−1), time at the inflection point 
(ti, w), specific rate of milk production decline post peak milk yield (κd, w−1), their respective standard 
errors (SE), and lower (L) and upper (U) 0.99 confidence limits

BPO2 κα ±SEκα Lκα Uκα ti ±SEti Lti Uti κd ±SEκd Lκd Uκd 

BPO11 0.177 0.0131 0.149 0.219 14.1 1.32 11.1 17.9 1.16 2.790 1.10 1.24 

BPO12 0.200 0.0180 0.163 0.261 12.9 1.48 9.6 17.4 1.73 6.820 1.57 1.92 

BPO21 0.117 0.0004 0.116 0.118 28.8 0.18 28.4 29.3 0.96 0.130 0.96  0.96  

BPO22 0.152 0.0007 0.150 0.154 21.5 0.14 21.1 21.8 1.24 0.220 1.24 1.25 

BPO23 0.157 0.0008 0.155 0.159 20.5 0.16 20.1 20.9 1.26 0.250 1.25 1.26 

BPO24 0.172 0.0010 0.169 0.174 18.1 0.18 17.7 18.6 1.27 0.300 1.26 1.28 

BPO25 0.176 0.0014 0.172 0.179 18.3 0.26 17.7 19.0 1.34 0.440 1.32 1.35 

BPO26 0.156 0.0020 0.151 0.161 20.3 0.51 19.0 21.6 1.12 0.580 1.11 1.14 

BPO31 0.133 0.0013 0.130 0.136 19.5 0.31 18.7 20.3 0.86 0.270 0.86 0.87 

BPO32 0.149 0.0017 0.145 0.154 20.7 0.37 19.7 21.6 1.11 0.480 1.10 1.12 

BPO33 0.167 0.0027 0.160 0.174 20.7 0.61 19.2 22.4 1.54 1.230 1.51 1.57 

BPO34 0.157 0.0047 0.146 0.170 15.7 1.23 12.8 19.2 1.08 1.550 1.04 1.12 

BPO41 0.098 0.0021 0.093 0.104 16.5 0.78 14.6 18.7 0.57 0.360 0.56 0.58 

BPO42 0.148 0.0045 0.137 0.161 18.8 0.87 16.7 21.1 1.12 1.310 1.09 1.16 

BPO43 0.199 0.0098 0.176 0.228 12.9 0.92 10.7 15.5 1.26 2.240 1.21 1.32 

BPO44 0.146 0.0061 0.132 0.164 21.5 2.11 16.7 27.7 1.70 4.400 1.59 1.82 

BPO51 0.146 0.0060 0.132 0.164 22.5 1.42 19.2 26.5 1.13 1.770 1.08 1.18 

BPO52 0.159 0.0073 0.142 0.181 21.0 1.42 17.7 25.0 1.64 3.820 1.54 1.74 

BPO53 0.181 0.0100 0.158 0.211 17.4 1.42 14.2 21.5 1.76 4.710 1.64 1.89 
1 Additional parameters estimated as nonlinear functions of Wood’s equation parameters. To be presented, actual estimates of κd, Lκd, and Uκd 

were multiplied by 102, whereas actual SEκd estimates were multiplied by 104.
2 BPOij means i-th breed versus j-th parity order interaction, ∀i, j: Girolando (i = 1), Holstein (i = 2), Jersey (i = 3), Crossbreed (i = 4), Brown Swiss 

(i = 5); and parity order are j = 1st, 2nd, …, 6th.
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Stroup, 2013). Nonetheless, we remind the reader  that we fitted the random effects of cow (σcow,β) and 
cow × parity order (σcpo,β) successfully only to the shape parameter β, and this result may explain the 
fitting flexibility of Wood’s equation over the other equations studied here. In addition, the combined 
powers of equations 17 and 19 accounted for variations attributable to either scale and correlations 
among repeated measures (Tables 2 and 3). If not discounted, those variations can be understood as 
pseudorandom variations that otherwise would inflate the residual variation (Vieira et al., 2018). The 
nlme function of R accounts for all these issues and its main advantage is to integrate all information 
in a single variance-covariance matrix. The overall benefits are an improved precision of parametric 
estimates and information loss minimization during the quantitative interpretation of nonlinear 
phenomena with mathematical models (Pinheiro and Bates, 2000).

4.1. Nonlinear models and their quality of fit

The Akaike criterion (Akaike, 1974) corrected for small samples (Sugiura, 1978; Hurvich and Tsai, 1989; 
Cavanaugh, 1997), namely AICcm, has been reported as one of the most important measures to evaluate 
the predictive power of mathematical models in a multiple hypotheses framework (Buckland et al., 
1997; Sober, 2002; Burnham and Anderson, 2004). The AICcm and its derived measures constitute 
the I-T approach, which allows the comparison of the quality of fit of different models and, whenever 
necessary, establishes parameters for model averaging. If one takes the smallest AICcm value to choose 
a model over the others, does an incomplete procedure within the I-T framework (Burnham and 
Anderson, 2004; Vieira et al., 2018; 2020). The smallest AICcm value indicates the lower information 
loss due to the fit of a given model among the feasible models evaluated. However, if one assumes 
that a given model is the best solution and ignores the others, depending on the pm for the chosen 
model, its uncertainty can be large. This is why we assumed that a low uncertainty for a given model is 
1 – pm < 0.10 (Burnham and Anderson, 2004; Vieira et al., 2018). 

The frequentist statistical tools available nowadays allow the association of random factors to the fixed 
parameters of nonlinear models and the fit of the resultant models by maximum or restricted maximum 
likelihood. In addition, one can challenge the traditional assumptions of homoscedasticity and 
independence of the errors with these tools based on the theories of nonlinear and generalized linear 
mixed-effects models (Pinheiro and Bates, 2000; Vonesh, 2012; Stroup, 2013). In our study, the use of 
the available statistical tools (nlme from R and GLIMMIX of SAS) provided considerable improvements 
in model fitting and prediction. Based on the I-T approach, we observed that Wood’s equation was 
superior in terms of quality of fit and the best choice to represent the diversity in shape and form of 
the lactation profiles, given the data. Nonetheless, many studies use the R2 to compare models, but 
this measure is not sensitive to differences among nonlinear models, which make comparisons useless 
because of the difficulty to demonstrate differences. Therefore, models that actually differ based on I-T 
may be considered equal if one bases on R2 or, alternatively, its adjusted version for model selection 
(Spiess and Neumeyer, 2010; Hossein-Zadeh, 2016).  

4.2. Lactation curve models

In this study, we challenged the ability of some models to mimic actual lactation records over 
time. Although the abundant dataset (37810 time-records) might have favored both accuracy and 
precision of the estimates, considerable variation may have arisen due to different ethnic types, parity 
orders, low number of cows for some breed-parity order interactions, and incomplete or irregular 
lactation records to characterize an entire lactation (0-305 days). These sources of variation might 
have constrained some of the results and increased the difficulty of obtaining valid, convergent, and 
robust solutions for some models. Nonetheless, the dataset offered the opportunity for Wood’s model 
to exhibit its flexible nature to fit both convex and concave lactation profiles. Concave profiles are 
rather frequent than one might expect; these concave profiles are characteristic of animals that did 
not present peak milk yield, and equation 1 mimicked those profiles when other models (equations 
12-14) failed. Within the framework of nonlinear mixed-effects models, Wood’s model even was able 
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to fit lactation profiles with incomplete records, which are needed to characterize an entire lactation 
trend (Table 3 and Figure 2, panel e).

Several authors faced difficulties with fitting models to atypical lactation profiles, that is, those profiles 
that deviate from the standard lactation convex-shaped trend (Rekik and Ben Gara, 2004; Macciotta et al., 
2005; López et al., 2015). Therefore, the greater flexibility of equation 1 provides the necessary accuracy 
and precision to the selection of cows based on ranking their performances as parametric attributes of 
the lactation profiles such as peak milk yield, mean milk production, ascending and descending rates, 
and more importantly, the total milk production per lactation.

There was a positive agreement between random β and total milk production estimates. Therefore, 
the use of the peak milk yield as a parameter for selection may result in the exclusion of cows that may 
produce high quantities of milk, even though the shape parameter β ≤ 0 for a given breed. Our findings 
favored the use of all lactation profiles from all cows. They avoided an equivocated exclusion of animals 
before the fit of the model, i.e., all animals were evaluated regardless of the occurrence of a peak milk 
yield or not (Rekik and Ben Gara, 2004). The poor performance of the other models (equations 12–14) 
may be explained by the no prior arbitrary exclusion of concave lactation records, as well as incomplete 
and irregular lactation profiles from our dataset. The advantage of the nonlinear mixed-effects models 
relies exactly upon the joint analysis of all lactation records employing a matrix of random effects, 
which encompasses the variation from the random sample of cows about the fixed parameters.

There are some reports that present a poor performance for equation 1 if compared with equations 
12 and 13. However, they used the nonlinear least-squares method of estimation to fit the models, 
did not consider random factors over the fixed parameters, nor did challenged the independence 
of residuals and homogeneity of variances (Brody et al., 1924; Dijkstra et al., 1997; Hossein-Zadeh, 
2016). Generally, convex-shaped lactation records are selected because they resemble the typical, 
standard lactation profile (Morant and Gnanasakthy, 1989; Dijkstra et al., 1997; Macciotta et al., 2005). 
Nonetheless, the final shape and form of the nonlinear model depend on its parametric estimates (Wood, 
1967; Grossman and Koops, 1988; Morant and Gnanasakthy, 1989; Dijkstra et al., 1997; Macciotta et al., 
2005). The sign and magnitude of the β estimate determine if the curve is flatter, presents a sharp 
peak, or decline monotonically at the onset of lactation at parturition (Congleton Jr. and Everett, 1980; 
Morant and Gnanasakthy, 1989). In addition, it is important to note that the inflection point in the 
descending phase is part of a typical convex-shaped lactation profile (Druet et al., 2003).

Congleton Jr. and Everett (1980) and Macciotta et al. (2006) believed that the lack of points at the 
ascending phase do not allow the proper characterization of the typical convex-shaped lactation 
profiles with a characteristic peak milk yield. Nonetheless, our dataset contains concave-shaped 
lactation records with several time points, as the better-characterized convex-shaped profiles do. This 
is why the accommodation of the random factor to parameter β resulted in the superiority of equation 
1 to represent the data, because final random estimates can be either 0 < β ≤ 1 and β ≤ 0. Because of 
the factors mentioned previously, we believe that those variations occurred when cows presented the 
peak milk yield on the day of parturition or nearly after parturition. These types of lactation profiles 
occurred for groups BPO41 and BPO43, which might be associated with the poor dairy temperament of 
Zebu breeds and its crossbreeds with dairy breeds (Bangar and Verma, 2017). Sometimes, even cows 
that exhibited a typical convex-shaped lactation profile in a previous lactation fail to present a peak 
milk yield in a further lactation, because of environmental factors such as metabolic disorders, mastitis, 
other diseases, and nutritional or other management errors (Wood, 1968, 1970, 1972, 1976, 1980; 
Macciotta et al., 2005; Hossein-Zadeh, 2016; Ahmed et al., 2019). Nevertheless, the cows that presented 
typical convex-shaped lactation profiles were those that produced more milk in the entire course of 
lactation than their counterparts did.

4.3. Geometric attributes of Wood’s model

The ascending phase of equation 1 is represented by κα and can be associated with the proliferation 
of secretory cells of the epithelial parenchyma in the mammary gland of cows (Capuco et al., 2001), 
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dairy does (Knight and Peaker, 1984), and mice and rats (Dijkstra et al., 1997). The DNA content of 
the mammary gland is richer in the ascending phase, which results in greater RNA transcription and 
the consequent translation into enzymes responsible for the synthesis of milk components such as 
galactosyl transferase, fatty acid synthase, and acetyl-CoA carboxylase (Knight and Peaker, 1984; 
Boutinaud et al., 2004). The continuous milk production increase may be associated with the net 
number of secretory cells that result from the processes of cell mitosis or differentiation (Capuco et al., 
2001; Dijkstra et al., 1997, 2010). Homeorhetic mechanisms orchestrate changes in the mammary 
gland and other metabolic organs of the animals to provide the machinery and nutrients for milk 
synthesis by the secretory tissue. The net results are the changes observed for milk yields in the course 
of the lactation, including changes in other variables that dairy animals go through during the dry and 
transition periods (Bauman and Currie, 1980; Bauman et al., 1999; Bauman, 2000). 

The smaller estimates for κα of primiparous cows within each breed observed in our study may be 
explained by the incomplete development of their mammary glands. First parity order cows are 
younger and still grow after the first calving; therefore, there is a competition for nutrients between 
the processes of growth, gestation, and the subsequent lactation, which delays the growth of the 
mammary gland and its full secretory potential observed in a mature cow (Bauman and Currie, 1980; 
Bauman et al., 1999; Bauman, 2000). Indeed, the mammary glands of cows (Capuco et al., 2001) and 
dairy does (Knight and Peaker, 1984) continue to grow until and after the first parturition. The volume 
of secretory tissue in the mammary gland of second parity order dairy does is greater than that of the 
first parity order does, but the greater differentiation in the quantity of secretory parenchyma occurs 
during pregnancy (Fowler et al., 1990; Knight and Wilde, 1993). Those biological facts may explain the 
greater κα estimates for multiparous cows and, consequently, their greater peak milk yields estimated 
in our study.

The peak milk yield can be used as a parametric reference for phenotypic selection of cows because 
of the good positive agreement between total milk production and peak milk yield in dairy cattle 
(Grossman and Koops, 1988; Tekerli et al., 2000; Hossein-Zadeh, 2014; López et al., 2015) and buffaloes 
(Hossein-Zadeh, 2016).  

The descending phase occurs soon after the peak milk yield (Figure 1) (Wood, 1967, 1976; Knight 
and Peaker, 1984; Dijkstra et al., 1997, 2010; López et al., 2015). We used the inflection point at the 
descending phase to obtain an estimator for κd. This specific constant rate can be an index of persistency: 
the greater the absolute values, the lower the lactation persistence, i.e., the sharper the decline after 
peak milk yield. Nonetheless, those cows that presented lactation profiles with greater κα estimates 
also presented greater arbitrarily positive κd estimates (smaller persistency). We observed a negative 
Pearson correlation between these two specific rates, which clearly demonstrated the relationship. Wood 
(1969) observed that as cows grow older, they start with greater milk yield records at parturition, but 
their rate of decline in milk production reduces as lactation advances post-peak milk yield (persistency 
reduces = larger absolute κd). Our results confirm that primiparous cows present flatter lactational 
profiles, which means a greater persistency if compared with their older counterparts (Grossman and 
Koops, 1988; Bauman et al., 1999; Cobuci and Costa, 2012; Hossein-Zadeh, 2014, 2016; López et al., 
2015). Therefore, the geometrization of equation 1 yielded parameter estimates that agreed with the 
biological trends reported in the literature.

The milk production decline post-peak yield may be associated to the reduction in the numbers 
of secretory cells in the mammary glands of cows (Capuco et al., 1997; Cobuci and Costa, 2012), 
dairy does (Knight and Peaker, 1984; Quarrie et al., 1994; Dijkstra et al., 1997), and small rodents 
(Walker et al., 1989; Strange et al., 1992; Dijkstra et al., 1997). The number of epithelial secretory 
cells recorded at the peak milk yield can be reduced by 40% until the end of lactation in cows 
(Capuco et al., 2001) and by 30 (Knight and Peaker, 1984) to 40% in dairy does (Fowler et al., 1990). 
Capuco et al. (2001) reported that the number of secretory cells results from the balance between cell 
proliferation and death, i.e., the quantity of secretory tissue reduces as the cell death rate overcomes 
the cell proliferation rate. This resultant cell loss occurs by some sort of a programmed mechanism 
for cell death also called cell apoptosis (Walker et al., 1989; Strange et al., 1992; Quarrie et al., 1994; 
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Stefanon et al., 2002). The first report about apoptosis was for no lactating mice and rats during 
the period of mammary gland involution (Walker et al., 1989; Strange et al., 1992). Nonetheless, 
Knight and Peaker (1984) detected the reduction in the number of cells of the secretory tissue 
after the eighth week of lactation in Saanen does. However, the association of this reduction in the 
number of secretory cells to the phenomenon of lactational apoptosis in ruminants was introduced 
by Quarrie et al. (1994). Therefore, from the estimation of κα and κd, we can infer quantitatively about 
the anatomic and physiological changes during pregnancy and mainly after parturition. We can also 
speculate, based on our correlated κα and κd estimates, that the faster the cell proliferation occurs, 
the sooner the process of cell apoptosis prevails in the secretory tissue of the mammary gland. In 
addition, we can use those parametric estimates to predict the impact of long-term environmental 
constraints over milk production trends (Wood, 1972), e.g., the attenuation or worsening of the 
effects of the oxidative stress over the secretory capacity of the mammary gland, and the consequent 
result in milk production (Bernabucci et al., 2002, 2005). Other solutions may be of use for short-
term effects that dramatically alter the lactation trends (Ahmed et al., 2019). 

We can make a direct algebraic comparison, for instance, between equations 1 and 13. If we take the 
root for ti > tp (equation 21) among other possible root solutions to d2μt⁄dt2 = 0 for μt from equation 
131,2, the time at the inflection point would be as follows:

ti = κ3
–1 log (0.5 κ4

–2θT (κ3 + 2 κ4 ± √κ3 (κ3 + 4κ4)))                                    Eq. (21)

Thence, we can apply the same rationale for κd as described by equations 7b and 8, with the properties 
described by Dijkstra et al. (1997). In sequence, we can also obtain an equivalent specific ratio as 
described by equation 11, because

κα = (μtp – μ0) (∫0
tpμ0 exp(θTκ3

–1 (1 – exp(–κ3t)) – κ4t)dt)–1                           Eq. (22)

In equation 22, tp = κ3
–1 log (κ4

–1θT), μtp = μ0(κ4⁄θT)κ4⁄κ3 exp(κ3
–1(θT – κ4)), and the definite integral can be 

solved numerically. Unfortunately, the model described by equation 13 did not fit our dataset with the 
same flexibility as Wood’s model did, and the comparison was only on a theoretical basis.

5. Conclusions

Based on the I-T approach, we demonstrated the superior quality of fit of Wood’s equation combined 
with a power-of-the-mean function to account for heterogeneous variances, with a first-order 
autoregressive correlation structure, and by introducing the random cow and cow × parity order 
effects over the shape parameter (β). This choice provides the best-suited model for mimicking 
lactation records quantitatively from a large dataset of cows from different breeds and with several 
parity orders, given the data, particularly if the dataset contains convex- and concave-shaped lactation 
profiles. It also provides the possibility of extracting nonlinear, geometric functions based on Wood’s 
equation parameters via a two-step prediction procedure to yield both accurate and precise estimates 
for ranking cows by predicting random effects over nonlinear functions of parameters. In this regard, 
the two-step prediction of the variables based on the geometric functions we deduced from Wood’s 
equation (κα, κd, μ̅0,305, ti and TMμt), together with previous ones already known (tp and μtp), may be of 
use as selection measures about cow performance and for quantitative associations or predictions for 
decision making at the farm level.
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