Role of endogenous opioids in 820 nm low power laser analgesia in the knees of Wistar rats*

Avaliação do papel de opioides endógenos na analgesia do laser de baixa potência, 820 nm, em joelho de ratos Wistar

Anamaria Meireles¹, Bruno Pogorzelski Rocha¹, Camila Thieime Rosa¹, Lígia Inez Silva¹, Maria Lúcia Bonfleur², Gladson Ricardo Flor Bertolini³

* Received from the Laboratory for the Study of Injuries and Physical Therapy Resources, State University of Western Paraná (UNIOESTE). Cascavel, PR.

SUMMARY

BACKGROUND AND OBJECTIVES: Pain may result in incapacity when it is associated to structural injury. Low power laser is useful in therapies aiming at decreasing joint pain and at tissue repair, but it is still somewhat controversial. This study aimed at evaluating whether analgesia induced by 820 nm low power laser is affected by the application of an endogenous opioids inhibitor.

METHOD: Twenty-four Wistar rats submitted to hyperalgesia were divided into four groups. G1: untreated; G2: treated with 820 nm laser; G3: naloxone injection before injury and untreated; G4: naloxone and treated with 820 nm laser. To induce hyperalgesia, 100 µL of 5% formalin were injected in the right tibiofemoral joint space. Nociception was evaluated by the time for flinching (TFF) in five moments: AV1 (pre-injury), AV2 (15 min/after), AV3 (30 min/after), AV4 (1 hour after) and AV5 (2 hours after).

RESULTS: All groups showed significant difference between AV1 and AV2, but only G2 showed no difference between AV1 and AV3. There have been no differences for remaining moments as compared to AV1.

CONCLUSION: Low power 820 nm laser analgesia is affected by naloxone.

Keywords: Analgesia, Laser beams, Naloxone, Rats.
CONCLUSÃO: A analgesia oriunda do laser de baixa potência, 820 nm, sofre interferências com aplicação de naloxona.

Descritores: Analgesia, Naloxona, Raios laser, Ratos.

INTRODUCTION

Pain may be associated to real or potential tissue injury and may cause incapacity by decreasing injured tissue function due to structural injury and tissue edema. Low power laser is widely used in therapies especially aiming at decreasing pain and repairing tissues. This technique also decreases fibrinogen, edema and the content of inflammatory cells, suggesting analgesia by decreasing the inflammatory process. One may stress biomodulation, ability to stimulate cell division, vasodilation, increased protein and cortisol synthesis. However, there are still controversies with regard to the effects and the way it promotes analgesia and about treatment parameters.

With regard to attenuation of pain caused by some mechanism unpleasant to the body or by tissue injury, it may be mediated by endogenous opioid system interactions. This is responsible for modulating pain by the action of encephalins and β-endorphins in charge of inducing analgesic effects and inhibiting nociceptive stimulus perception due to their action on opioid receptors. A possibility for the analgesic effect of low power laser is peripheral opioids release from immune system cells, with significant release of local β-endorphins, in addition to the independent effect on opioid receptors. In this context, the action of opioid antagonist substances and drugs to oppose their effects is studied and one example would be naloxone. Such drug is characterized as a non-specific opioid receptor antagonist. Based on some discrepancies in the literature with regard to low power laser parameters and its analgesic action caused by peripheral β-endorphins, this study aimed at evaluating whether low power 820 nm laser analgesia is affected by the application of an endogenous opioid inhibitor such as naloxone.

METHOD

Study with 24 Wistar rats kept in polypropylene cages with free access to water and feed, with controlled dark/light cycle of 12 hours and controlled room temperature (24 ± 1º C). The study followed the international ethical standards for animal experiments. Animals were randomly distributed in four groups:

- Group 1 (G1, n = 6) – submitted to hyperalgesia induction in right knee and untreated;
- Group 2 (G2, n = 6) – right knee hyperalgesia and treated with 820 nm laser, with energy density of 8 J/cm²;
- Group 3 (G3, n = 6) – right knee hyperalgesia with naloxone injection previous to the injury;
- Group 4 (G4, n = 6) – right knee hyperalgesia and naloxone, treated with laser (8 J/cm²).

Animals were manually contained and received 100 µL of 5% formalin in the tibiofemoral joint space to induce hyperalgesia. G3 and G4 animals received 1 µg naloxone in the right tibiofemoral joint space 15 minutes before hyperalgesia induction. G1 and G2 animals received 9% saline solution.

Evaluation of nociception

The functional incapacity test was used to evaluate nociception during gait, which is made by a cylinder and a computer program connected to a metal boot adapted to animal’s paw. The experiment started with 5 days of training. Animals walked on a 30 cm diameter cylinder covered by a stainless steel mesh which, through an electric engine, has reached 3 rpm. A metal boot was coupled to animal’s hind paws, which has sent information through a wire connecting the boot to the computer with a program showing time for flinching values while walking on the cylinder for one minute (time for TFF). Left hind paw was also connected to a boot, however without sending information to the computer, so both paws had the sensation of wearing a boot. The day after the last training day, normal gait time values were collected (at pre-injury moment (AV1), 15 (AV2) and 30 (AV3) minutes after hyperalgesia induction as well as 1 hour (AV4) and 2 hours (AV5) later.

Treatment protocol

Treatment was started after AV2, that is, 15 minutes after hyperalgesia induction. G1 and G3 suffered no therapeutic intervention, only simulations. G2 and G4 were treated with low power laser (Ibramed®), with 820 nm wavelength, power of 30 mW, energy density of 8 J/cm², with punctual and continuous output area of 0.1160 cm² on the medial aspect of the knee joint. Soon after AV3 (30 minutes after injury), animals received new treatment or simulation. After the last evaluation (AV5) all animals were euthanized by guillotine decapitation.
Statistical analysis

ANOVA test for repeated measures was used to compare within groups, and unidirectional ANOVA was used to compare intra-groups with Tukey’s post-test. For all cases, significance level was 5%. This study was approved by the Ethics Committee for Animal Experiments and Practical Classes, State University of Western Paraná (UNIOESTE), under process 02911/2011.

RESULTS

There has been increased TFF for G1, G3 and G4 when comparing AV1 to AV2 and AV3 (p < 0.005). For G2, there has been difference only between AV1 and AV2 (p < 0.005). There has been significant TFF decrease for G2, G3 and G4 when comparing AV2 to AV4 and AV5. For G2, there has been also decrease with regard to AV3 (p < 0.05) (Graph 1).

When comparing among groups, there has been significant difference only in AV2 when G1 was compared to G4 (p < 0.05).

Graph 1 – Functional Incapacity Test (FIT), with time for flinching (TFF) values – 1A:G1, 1B:G2, 1C:G3, 1D:G4. * Significant difference as compared to AV1. 0 Significant difference as compared to AV2.

DISCUSSION

In the search for analgesic and anti-inflammatory methods, low power laser is an interesting method for decreasing pain and the inflammatory process, and for producing few side effects. Laser effects are dose-dependent and the expected response is not obtained with it is used in under or overdoses; however, in adequate doses there is effective analgesic effect, in spite of a huge discrepancy with regard to adequate dose and wavelength, thus raising the need for other studies to evaluate such dosimetric parameters. Our study has observed that the dose used (8 j/cm²) with 820 nm laser was adequate to induce analgesia as already observed by other study. The evaluation tool used is also referenced in the literature, showing that animals with increased nociception have longer time for flinching while ambulating for one minute, as compared to animals without painful stimulation.

Naloxone was the first opioid receptor antagonist widely used in studies and clinical practice. Our study has observed that low power 820 nm laser analgesic effect has suffered significant interference and was antagonized by naloxone. To justify such effect, it is inferred that the group receiving naloxone and low power laser association has maintained pain in intra-group comparison for the third evaluation moment. It is then believed that laser might have induced endogenous opioids production and release by blood cells, thus explaining our results.

Such situation is in line with findings of a study using peripheral opioid receptor antagonists, however with 660 nm wavelength, that is within the visible length. However, as already described with regard to controversies, in another study, laser analgesic effect in a carrageenan-induced nociceptive model, was not antagonized by naloxone. On the other hand, other studies show opioid-mediated laser analgesic effects antagonized by systemic naloxone, that is injected by the intraperitoneal route. It is worth reminding that our study has used low naloxone doses so just an intra-articular and not systemic effect was expected.

Our study has used naloxone as the sole endogenous opioid receptor antagonist, suggesting the use of other drugs in association to laser to evaluate their possible effects and efficacy on analgesia and joint edema.

CONCLUSION

Low power 820 nm laser analgesia is affected by the peripheral application of an endogenous opioid antagonist such as naloxone.
REFERENCES


Submitted in February 02, 2012. Accepted for publication in May 27, 2012.