ABSTRACT

BACKGROUND AND OBJECTIVES: Low back pain is a public health problem and among physiotherapeutic treatment modalities there are joint mobilizations, such as central posteroanterior joints. However, there is a gap with regard to mobilization of all lumbar vertebrae. So, this study aimed at evaluating the effects of different Maitland mobilizations levels, in all lumbar spine vertebrae, in healthy volunteers, to assess pain intensity to cold and pressure.

METHODS: This was a crossover clinical trial, with 15 female volunteers who received posteroanterior mobilizations, varying the level between I-IV. In one of the weeks, volunteers received no mobilization. Studied variables were pain intensity to cold and pain threshold to pressure, previous to mobilization (AV1), 5 (AV2) and 35 minutes after mobilization (AV3).

RESULTS: It was observed that 35 minutes after mobilization for levels II and III there has been significant pain intensity decrease to cold as compared to AV1, what was also true for levels III and IV as compared to AV2. There have been no significant differences in pressure threshold evaluation.

CONCLUSION: Mobilizations have produced as from LII significant decrease in pain intensity to cold, but there has been no effect with regard to pain to pressure.

Keywords: Physiotherapy modalities, Therapy with exercises, Spine.

INTRODUCTION

Low back pain (LBP) is considered a global public health problem, generating significant social and health costs. There is a variety of physiotherapeutic approaches being most common the use of manual therapy with mobilizations and manipulations, electric stimulation and guidance1.

There are manual therapy techniques which are applied for diagnosis and management of joint mobility. So, physiotherapists using manual techniques correlate the findings of the exam to the nature and distribution of symptoms to reach a diagnosis and be able to select the most adequate treatment2. These manual techniques may be effective to control pain because skin touch may be a powerful means to modulate pain, and velocity of proprioceptive stimuli may help the inhibition of painful stimuli in the central nervous system (CNS)3.

1. State University of Western Paraná, Cascavel, PR, Brazil.

Accepted for publication in January 14, 2014.
Conflict of interests: none.

Correspondence to:
Gladson Ricardo Flor Bertolini
Rua Universitária, 2009 – Jardim Universitário
85819-110 Cascavel PR, Brazil.
E-mail: gladson_ricardo@yahoo.com.br

© Sociedade Brasileira para o Estudo da Dor
on training and manual perception of each professional. A
well-known manual therapy method is Maitland joint mo-
bilization. This method involves a series of maneuvers used
to evaluate and treat musculoskeletal system disorders. It
consists in applying oscillatory loads to produce accessory
intra-joint movement. This method divides loads application
in levels of movement. However, such levels are defined in
qualitative terms, which may lead to major variability in the
application of loads for each level\(^4\).

Maitland mobilization levels I and II correspond to the ap-
lication of oscillatory movements, with slow rhythm in the
beginning of accessory joint movement amplitude, free from
the resistance offered by tissues, and are indicated in cases
of painful joint processes. Levels III and IV are maneuvers
characterized by oscillatory movements at the end of acces-
sory movement amplitude or as from periarticular tissues re-
sistance\(^5\). Load imposed during maneuvers levels III and IV
promotes viscoelastic adaptation of connective tissues, thus
being indicated to recover accessory movements when there is
restriction for such movement\(^6\).

One joint mobilization technique used to evaluate and treat
spinal disorders is the central posteroanterior (PA) pressure
technique. Here, the evaluator through the pisiform bone ap-
plies oscillatory load on the spinal process of one vertebra of
a patient in the prone position. Although there are studies us-
ing PA mobilization on the lumbar spine, there is a gap with
regard to mobilization of all vertebrae of this segment.

This study aimed at evaluating the effect of different levels
of Maitland mobilizations in all lumbar spine vertebrae, in
healthy volunteers, by evaluating pain intensity to cold and
pressure.

METHODS

This is a crossover and transversal clinical trial. Sample was
composed of 15 young, adult, female volunteers, students of the
State University of Western Paraná (UNIOESTE), Cas-
cavel campus, age 21.27±0.88 years, height 1.67±0.06 meters
and weight 57.93±4.83 kg. Sample size was calculated based
on previous studies with the use of pressure dolorimeter for
a standard deviation of 4.5 and difference to be detected of
5Kgf, with significance level of 5% and power of 85%.

In the first contact, volunteers were explained about inten-
tions and procedures, as well as were asked about their inter-
est in participating in the research. After acceptance of vol-
unteers and their signing of the Free and Informed Consent
Term, evaluations and mobilization techniques were started.

Volunteers should not present LBP (chronic and/or acute),
spinal surgeries, local sensory disorders and/or in lower limbs,
infections, gestation and recent trauma. They should have
their sensitivity preserved and should attend to relevant mo-
ments and dates.

Evaluation moments

Volunteers participated in the project once a week for five
weeks. During four weeks they randomly received a different
mobilization level (LI, LII, LIII, LIV) plus evaluations, and
in one week they were just evaluated without mobilization
(L0). Evaluations were carried out three times every day: pre-
mobilization moment (AV1), 5 (AV2) and 35 minutes after
mobilization (AV3).

Evaluation of pain intensity to cold

Volunteer immersed the dominant foot up to the most distal
region of the medial malleolus, in a container with water and
ice at 5°C ± 1 for 30 minutes and temperature was controlled
with Incoterm\(^\text{®}\) mercury thermometer. After 30 seconds the
volunteer was asked about pain intensity by the visual analog
scale (VAS). Such scale was a wood apparatus with a movable
metal cursor on one side, where the volunteer would mark
position between “0” (no pain) and “10” (maximum imagin-
able pain), and on the other side there was a ruler in the op-
posite direction allowing for the quantification in centimeters
of pain indicated by participant.

Evaluation of pain threshold to pressure

To evaluate pain to pressure a pressure dolorimeter (Kratos\(^\text{®}\))
was used, with capacity to produce up to 50Kgf, with 1cm\(^2\)
circular tip, which was applied on the spinous process of the
3rd lumbar vertebra soon after evaluation by VAS.

Mobilization protocol

Patients received central PA technique for mobilization in all
lumbar spine spinous processes, for one minute each. Two
therapists have performed mobilizations, however to prevent
biases, there was no rotation between therapists, that is, they
would mobilize always the same individual.

Volunteers remained in the prone position with arms along
the body. Therapist remained at the left side and positioned
left hand ulnar border, region of pisiform and hamate bones,
in contact with the spinous process of the vertebra to be mo-
bilized. Left hand was then reinforced by shell-shaped right
hand with the approximation of thenar and hypothenar emi-
nces over the radial surface of the other hand. So, leaving
right middle, ring and little fingers between left index finger
and thumb, and placing left index finger and thumb over left
hand dorsum, stability was obtained by holding the palm of
left hand between thenar eminence and right middle, ring
and little fingers. Therapist’s shoulders were in balance over
the patient, with slightly flexed elbows.

The study was carried out during five weeks, being that in
every week there were three randomly chosen volunteers for
each subgroup. Mobilization levels were:

- **Level I** – low amplitude movement close to initial route posi-
tion;
- **Level II** – high amplitude movement within the route. It may
occupy any part of the route which is free from any muscle
stiffness or spasm;
- **Level III** – high amplitude movement, however within muscle
stiffness or spasm at the end of amplitude;
Level IV – low amplitude forced movement within muscle stiffness or spasm at the end of amplitude.

Volunteers received mobilizations soon after the first evaluation moment (AV1) and then they were evaluated as already described.

ANOVA test for repetitive measures with Bonferroni post-test were used for data analysis, considering significant $\alpha=5\%$.

This study was approved by the Research Ethics Committee, State University of Western Paraná (UNIOESTE) under opinion 242/2011.

RESULTS

Pain intensity to cold, evaluated by VAS, has shown pain intensity decrease only in the last evaluation, when mobilization was carried out as from LII. There were no statistically significant differences among groups (Table 1).

<table>
<thead>
<tr>
<th>Table 1. Pain intensity to cold, according to visual analog scale, in all levels of the three evaluations</th>
</tr>
</thead>
<tbody>
<tr>
<td>Levels</td>
</tr>
<tr>
<td>--------</td>
</tr>
<tr>
<td>Visual analog scale</td>
</tr>
<tr>
<td>L0</td>
</tr>
<tr>
<td>LI</td>
</tr>
<tr>
<td>LII</td>
</tr>
<tr>
<td>LIII</td>
</tr>
<tr>
<td>LIV</td>
</tr>
</tbody>
</table>

*Significant difference within group, when comparing with AV1; ** Significant difference, within group, when comparing with AV2.

Pain threshold to pressure

During evaluation of pain threshold to pressure, no group has shown significant differences (Table 2). There were also no significant differences among groups.

<table>
<thead>
<tr>
<th>Table 2. Results of pain threshold to pressure on L3 according to levels used during three evaluations</th>
</tr>
</thead>
<tbody>
<tr>
<td>Levels</td>
</tr>
<tr>
<td>--------</td>
</tr>
<tr>
<td>Pain threshold</td>
</tr>
<tr>
<td>L0</td>
</tr>
<tr>
<td>LI</td>
</tr>
<tr>
<td>LII</td>
</tr>
<tr>
<td>LIII</td>
</tr>
<tr>
<td>LIV</td>
</tr>
</tbody>
</table>

DISCUSSION

Manual therapy is effective to treat LBP7. During evaluation, therapists look for signs of spinal stiffness of people with low back pain aiming at treating it6. However, there are controversies with regard to stiffness as predictor of clinical results such as pain and incapacity6. However, notwithstanding controversies, spinal mobilizations have as major results the inhibition of pain induced by mechanical stimuli, which may occur by creating long term depression of CNS synaptic function, in addition to improving lumbar spine movement amplitude10,11. Our study has used the PA technique in the whole lumbar segment, which has decreased pain intensity to cold. A previous study, also using PA mobilization, but in patients with LBP, has shown that mobilization may decrease pain intensity when patients actively move, and the protocol used was three one-minute repetitions and mobilization force magnitude was selected by the therapist according to the patient11. Similarly, it was observed in our study that pain intensity to cold was decreased with mobilizations as from level II, fact which was not observed both for control group (G0) and level II. Precise pain relief mechanisms are still not established, but possible explanations are theories such as gates and descending suppression mediated by periaqueductal gray matter. A study using PA mobilization on L3, with pressure variations between 50 and 200N, which were alternated from large to semi-static oscillations, has observed decreased pain threshold to pressure in all variations13.

This result was not observed in the evaluation of pain threshold to pressure in our study, however it is worth highlighting that all lumbar vertebrae were mobilized, which might have generated discomfort caused by pressure in more than one segment. Also, one have to take into consideration that, in our study, mobilizations were performed by two students who, in spite of having been trained, had little experience with the technique, which even for experienced therapists, according to studies, has poor reliability of mobilization levels performance5,14. Another limitation of our study was that it was a crossover study, which might have generated the loading effect, although in attempt to decrease such effect, there was a 7-day interval between mobilizations.

So, it is suggested that new studies could be carried out with more experienced therapists and evaluating mobilizations in more than one segment. We also stress that the lack of changes in cold-induced pain for level I does not mean that this could not produce hypoalgesic effects15, but for individuals without previous pain such stimulus was insufficient to generate minimizing effects. So, studies with mobilizations in more than one segment in acute and chronic low back pain patients are relevant.

CONCLUSION

Oscillatory mobilizations on lumbar vertebrae of healthy individuals have produced, as from LII, significant decrease in pain intensity to cold, but there has been no effect with regard to pain to pressure.

ACKNOWLEDGMENTS

To the National Council of Scientific and Technological Development (CNPq) and to Araucária Foundation for the support with scientific initiation scholarships in the Affirmative Actions modality.
REFERENCES

2. van de Veen EA, de Vet HC, Pool JJ, Schuller W, de Zoete A, Bouwer LM. Variance in manual treatment of nonspecific low back pain between orthomano
4. Chiradejnant A, Latimer J, Maher CG. Forces applied during manual therapy to pa-
5. Snodgrass SJ, Rivett DA, Robertson VJ. Manual forces applied during cervical mobil-
during a dorsally directed translation mobilization of the glenohumeral joint. Arch
7. Slater SL, Ford JJ, Richards MC, Taylor NF, Sukirti LD, Hahne AJ. The effectiveness of
sub-group specific manual therapy for low back pain: a systematic review. Man
8. Kumar S. Posteroanterior spinal stiffness at T5, T10, and L3 levels in normal subjects.
9. Ferreira ML, Ferreira PH, Latimer J, Herbert RD, Maher C, Refshauge K. Relation-
ship between spinal stiffness and outcome in patients with chronic low back pain.
11. Sato T, Koumori T, Uchiyama Y. Preliminary study of the immediate effect of spinal
 segmental side bending mobilization on improves lumbar range of motion. J Phys
effects of different amplitudes of PA mobilisations on the lumbar spine as measured
14. Snodgrass SJ, Rivett DA, Robertson VJ. Manual forces applied during posterior-to-