Validity of the Katz Index to assess activities of daily living by informants in neuropathological studies

Validade do Índice de Katz para avaliar atividades básicas de vida diária por informantes em estudos neuropatológicos

Validez del Índice de Katz para evaluar las actividades básicas de vida diaria por informantes en estudios neuropatológicos

Renata Eloah de Lucena Ferretti-Rebustini1,2, Marcos Alencar Abaide Balbinotti2, Wilson Jacob-Filho3,4, Flávio Rebustini2,5, Claudia Kimie Suemoto1,3, Carlos Augusto Gonçalves Pasqualucci1,3, José Marcelo Farfel3,4, Renata Elaine Paraízo Leite3, Lea Tenenholz Grinberg3,7, Ricardo Nitrini3,8

ABSTRACT

Objective: To analyze the evidences of construct validity of the Katz Index for the retrospective assessment of activities of daily living (ADL) by informants, to assist neuropathological studies in the elderly. Method: A cross-sectional study analyzed the functional ability of ADL measure by the Katz Index, of 650 cases randomly selected from the Brazilian Brain Bank of the Ageing Brain Study Group (BBBABS) database. Sample was divided in two subsamples for the analysis (N=325, each) and then stratified according to cognitive decline assessed by the Clinical Dementia Rating Scale (CDR). Factor analysis with calculations of internal consistency and invariance were performed. Results: Factor analysis evidenced a unidimensional instrument with optimal internal consistency, in all subgroups. Goodness of fit indices were obtained after two treatments of covariance, indicating adequacy of the scale for assessing ADL by informants. The scale is invariant to cognitive decline meaning that it can be used for subjects with or without cognitive impairment. Conclusion: Katz Index is valid for the retrospective assessment of basic ADL by informants, with optimal reliability.

DESCRIPTORS
Activities of Daily Living; Aging; Proxy; Psychometrics; Validation Studies.

Corresponding author:
Renata Eloah de Lucena Ferretti-Rebustini
Av. Dr. Enéas de Carvalho Aguiar, 419 –
Cerqueira César
CEP 05403-000 – São Paulo, SP, Brazil
reloah@usp.br

Received: 05/29/2015
Approved: 07/15/2015

DOI: 10.1590/S0080-623420150000600010
INTRODUCTION

Global prevalence of dementia is increasing and estimates indicate that in 2050 there will be 135 million of people worldwide suffering from dementia\(^{(1)}\). The higher prevalence rates are in Latin America (8.7%)\(^{(2)}\), probably due to the increased occurrence of risk factors in these countries\(^{(3)}\). Characterized by progressive impairment in cognition, in behavior and in functional ability to independent living\(^{(2,4-5)}\), the cause of dementia is still unknown\(^{(4)}\). Thus, postmortem studies can play and important role in helping elucidate the pathways of dementia physiopathology.

Clinicopathological studies of dementia are more important than brain autopsy only, once the correlations of clinical data with the brain autopsy findings are precious. These types of studies have some limitations regarding autopsy donations and clinical data acquisition. Despite the limitations, clinicopathological studies are worthy. After death, in cases where clinical data are not available either because the dementia diagnosis was not established in life or because clinical data is missing, the informant interview can be the only source of information.

Considering the value of functional status in the diagnosis of dementia\(^{(6)}\), assessing the patient’s ability to perform independently activities of daily living (ADL) is extremely important to clinicopathological diagnosis after death. Information about the performance of the patient to ADL can be gathered with a close knowledgeable informant by using assessment scales. The only problem is that as far as it is known, no functional assessment scales have been developed to be used in postmortem studies.

In the last decade, the Brazilian Brain Bank of the Ageing Brain Study Group (BBBABS B) has been collecting brains for clinicopathological analysis and functional data related to performance in ADL prior to death is obtained, retrospectively, by use of the Katz Index\(^{(7)}\). The instrument assesses six basic ADL: bathing, dressing, toileting, continence, transference and feeding\(^{(8-11)}\). Since the scale development, some evidences of validity were verified; with data concerning psychometric information mostly limited to reliability and validity analysis or to item difficulty hierarchy\(^{(10-16)}\).

To date, no study has described structural factors of the scale and psychometric properties for its use with infor mants in postmortem settings; therefore, the aim of the present study was to analyze the psychometric properties of the Katz Index for the retrospective assessment of basic ADL by informants in postmortem, to assist neuropathological studies.

METHOD

STUDY DESIGN AND SOURCE OF CASES

A cross-sectional study was performed where secondary data from the Brazilian Brain Bank of the Aging Brain Study Group (BBBABS B) database were analyzed. The BBBABS B is a tissue bank and its procedure has been approved by local ethical committee (N\(^{o}\) 458.272) and described elsewhere\(^{(17-19)}\). The study was approved by the Research Ethics Committee for the Hospital das Clínicas da Faculdade de Medicina da Universidade de São Paulo (N\(^{o}\) 942/04). Written informed consent was obtained from the next-of-kin on behalf of the participant, before the interview.

STUDY SAMPLE AND PARTICIPANT SELECTION

From the original sample of 3.000 valid cases included from 2005 to 2012, 650 cases were randomly selected by an online program (http://www.randomizer.org/). The random sampling procedure was adopted to minimize the investigator’s interference in the case selection. Sample size was estimated to obtain a factor loading of 0.30\(^{(19)}\).

STUDY VARIABLES

The variables extracted from the BBBABS B database were age, gender, score of the Informant Questionnaire on Cognitive Decline of the Elderly (IQCODE), the score of the Clinical Dementia Rating Scale (CDR), and Katz Index scores (total and for each scale item). In the BBBABS B, these variables are gathered during a clinical interview\(^{(20)}\) with a knowledgeable informant and refer to the time prior to the subject’s death. All of the informants reported having close contact (daily living) with the subject.

ASSESSMENT OF THE ACTIVITIES OF DAILY LIVING (ADL)

During the BBBABS B clinical interview with the informant, a trained nurse investigated basic ADL by the Katz Index.

The Katz Index\(^{(7)}\) consists of a 6-item scale: bathing, dressing, toileting, transfer, continence and feeding\(^{(16)}\). The scale ranks subjects according to performance for each item and gives a total score corresponding to overall performance\(^{(7)}\). Several forms of interpretation have been proposed\(^{(7,11,21-25)}\). The BBBABS B uses an adapted scoring method that attributes a value for each item as follows: 1 – performs the activity without any assistance (independent); 0.5 – performs the activity with partial assistance (partially dependent); 0 – needs full assistance to perform the activity (dependent). The global score varies from 0 to 6, with six being the most independent. Subjects are classified into three levels of dependency: independent (≥ 6 points), partially dependent (3 – 5 points) and dependent (≤ 2 points)\(^{(26)}\). The 3-point scoring system facilitates classical factor analysis, as binary data can cause bias in the standard analyses\(^{(19)}\).

STATISTICAL ANALYSIS

Before the analysis, sample was divided in two halves: subsample A (N=325) and subsample B (N=325). The evidence of construct validity was observed by Exploratory Factor Analysis (EFA) and Confirmatory Factor Analysis (CFA). EFA and Reliability analysis were conducted in Subsample A and CFA in subsample B. To test whether there were differences in construct validity according to the existence of cognitive decline prior to death we stratified subsample A in two groups: without cognitive decline (CDR 0) and with cognitive decline (CDR ≥0.5).

For the EFA we used the weighted least squares method to minimize residuals with oblimin rotation and
extract of factors load ≥ 0.40 \(^{19,20} \). A Kaiser-Meyer-Olkin (KMO) ≥ 0.70 and a significant Bartlett Index represented a measure of sample adequacy \(^{19} \). Model fit was analyzed by inspecting fit indexes, modification indexes (MI) and correlational residuals \(^{19,20} \). Adequacy of a good model fit were: non-significant Chi-squared \((X^2) \); goodness of fit index (GFI) ≥ 0.95; adjusted goodness of fit index (AGFI) ≥ 0.95; standardized root mean square residual (SRMR) ≤ 0.08; comparative fit index (CFI) ≥ 0.95; Tucker-Lewis coefficient (TLI) ≥ 0.95; normed fit index (NFI) ≥ 0.95 and root mean square error of approximation (RMSEA) ≤ 0.07. MI was observed to determine which errors could be controlled \(^{19,20} \). Invariance \(^{19} \) of the scale according to cognitive decline was analyzed by comparing the scale construct in two groups (with or without cognitive decline).

To test reliability we used the Cronbach’s alpha (\(\alpha \)). Good general internal consistency was observed when the \(\alpha \)-value was > 0.70. Item-item correlation was used to determine redundancy among items (> 0.80), and corrected item-total correlation was observed to determine the discriminatory power of the item (> 0.30) \(^{19} \).

For the analysis, the IBM Statistical Software for the Social Sciences (SPSS v.21), with AMOS package, was used. The Stats Tools Package of Excel was used for the analysis of invariance. All tests were two-sided, and the significance level was set at 0.05.

RESULTS

The total sample consisted of 650 participants who were mostly men (55.3%) with a mean age of 68.7±11.3 years. Women were older than the men (70.7±11.8 vs. 67.1±10.7 years; \(p<0.01 \)). Subjects were mostly independent (76.5%). Only 7.7% were partially dependent, and 15.8% were totally dependent. Men were more independent than women, with a mean global Katz Index score of 5.4±1.6 points (95% CI: 5.2 – 5.5) compared with 4.9±2.0 points for women (95% CI: 4.7 – 5.1). This difference was statistically significant \((p<0.001) \). Concerning the cognitive decline, 513 (78.8%) were CDR 0 and 21.2% had CDR varying from 0.5 to 3. The mean IQCODE of the sample was 3.19±0.44 points. Comparisons of sex distribution, age, years of schooling, Katz and IQCODE in each subsample is presented in Table 1.

EXPLORATORY FACTOR ANALYSIS

A ratio of approximately 54 cases per item was used (325 cases of subsample A and 6 items). Table 1 presents the results of EFA for the whole subsample (total) and according to cognitive decline. The Kaiser-Meyer-Olkin and the Bartlett’s sphericity test showed the sample adequacy of the factor analysis to be performed in all groups. We observed the same evidence of construct structure (one-dimensional instrument) and reliability in all groups. Only one factor was extracted (named independence to ADL) being responsible for more than 80% of construct, in all groups.

It was observed the existence of strong range of item-item correlations (> 0.85), very small correlation matrix determinant (< 0.00001), higher values of communalities (> 0.95) and strong standardized item-total correlations (> 0.90). This all are indicative of collinearity.

Table 1 – Sample characteristics according to selected variables – São Paulo, SP, Brazil, 2005 – 2013.

<table>
<thead>
<tr>
<th></th>
<th>Total</th>
<th>Subsample A</th>
<th>Subsample B</th>
</tr>
</thead>
<tbody>
<tr>
<td>N</td>
<td>650</td>
<td>325</td>
<td>325</td>
</tr>
<tr>
<td>Gender Male [n(%)]</td>
<td>360 (55.4)</td>
<td>183 (56.3)</td>
<td>177 (54.5)</td>
</tr>
<tr>
<td>Female [n(%)]</td>
<td>290 (44.6)</td>
<td>142 (43.7)</td>
<td>148 (45.5)</td>
</tr>
<tr>
<td>Age (mean ± SD)</td>
<td>68.7 ± 11.3</td>
<td>69.2 ± 11.4</td>
<td>68.1 ± 11.2</td>
</tr>
<tr>
<td>Years of schooling (mean ± SD)</td>
<td>4.4 ± 3.5</td>
<td>3.891 ± 3.7</td>
<td>4.4 ± 3.4</td>
</tr>
<tr>
<td>IQCODE (mean ± SD)</td>
<td>3.2 ± 0.4</td>
<td>3.2 ± 0.5</td>
<td>3.1 ± 0.4</td>
</tr>
<tr>
<td>Katz Index (mean ± SD)</td>
<td>5.3 ± 1.7</td>
<td>5.3 ± 1.7</td>
<td>5.2 ± 1.8</td>
</tr>
<tr>
<td>Clinical Dementia Rating Scale [n(%)]</td>
<td>512 (78.8)</td>
<td>247 (76.0)</td>
<td>263 (81.5)</td>
</tr>
<tr>
<td>CDR 0</td>
<td>43 (6.6)</td>
<td>20 (6.2)</td>
<td>23 (7.1)</td>
</tr>
<tr>
<td>CDR 1</td>
<td>36 (5.5)</td>
<td>21 (6.5)</td>
<td>15 (4.6)</td>
</tr>
<tr>
<td>CDR 2</td>
<td>23 (3.5)</td>
<td>14 (4.3)</td>
<td>9 (2.8)</td>
</tr>
<tr>
<td>CDR 3</td>
<td>36 (5.5)</td>
<td>23 (7.1)</td>
<td>13 (4.0)</td>
</tr>
</tbody>
</table>

Table 2 – Exploratory Factor Analysis of Katz Index, according to cognitive impairment – São Paulo, SP, Brazil, 2005-2013.

<table>
<thead>
<tr>
<th></th>
<th>Total</th>
<th>Without Cognitive Impairment* (n=247)</th>
<th>With Cognitive Impairment* (n=78)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Gender Male/ Female (n)</td>
<td>152/ 95</td>
<td>76.52 ± 10.61</td>
<td>29.4 ± 2.99</td>
</tr>
<tr>
<td>Age (mean ± SD)</td>
<td>66.92 ± 10.68</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Years of schooling</td>
<td>4.19 ± 3.84</td>
<td></td>
<td></td>
</tr>
<tr>
<td>IQCODE (mean ± SD)</td>
<td>3.0 ± 0.4</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Katz Index (mean ± SD)</td>
<td>5.8 ± 0.6</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Exploratory Factor Analysis

Range of item correlation

<table>
<thead>
<tr>
<th>% of Correlations > 0.90</th>
<th>0.817 – 0.940</th>
<th>0.742 – 0.945</th>
<th>0.754 – 0.926</th>
</tr>
</thead>
<tbody>
<tr>
<td>Determinant</td>
<td>9.674^<sup>-8</sup></td>
<td>7.405^<sup>-8</sup></td>
<td>0.001</td>
</tr>
<tr>
<td>KMO</td>
<td>0.918</td>
<td>0.880</td>
<td>0.905</td>
</tr>
</tbody>
</table>

 communalities

| % variance explained by the 1st factor | 87 |
| Factor loadings | 0.906 – 0.975 | 0.849 – 0.987 | 0.867 – 0.952 |

continued...
CONFIRMATORY FACTOR ANALYSIS

To reach goodness of fit in CFA the initial model required two adjustments (errors controlled): a) between bathing – dressing; b) between transfer – feeding. After their adjustment, the model reached goodness of fit indexes (Table 3). Structural Equation Model is presented in Figure 1.

Invariance analysis evidenced that the Katz Index is invariant to the existence of cognitive decline (Table 4). These results indicate that the scale can be used, independent of the existence of cognitive decline, and no normalization should be done for the scales in each group (with or without cognitive decline).

Thus, all these results indicate that in post-mortem, the Katz Index has good construct validity and goodness of fit to assess independence to basic ADL, despite the existence of cognitive decline.

DISCUSSION

Postmortem assessment of ADL to assist neuropathological studies is as important as it is during health care assistance, once it will contribute to the better understanding of the mechanisms of disease during the clinico-pathological analysis. It is important to consider not only how to rate ADL, but also how it is assessed, once techniques related to measures will influence the estimative of impairment (25).

In postmortem settings, ADL is very important as an indicative of disease progression. However, patients are not available to provide valid information or to perform activities to the assessment, as they are already dead. Therefore, other methods of gathering valid information are necessary, and the informant is an important source, as it is when the patient is alive. Thus, methods of investigation or health assessment by informants must be improved.

The Katz Index is a widely used instrument in different scenarios. It has been demonstrated that several studies used the Katz Index to assess ADL directly by patients or by proxies (informants) (25,27). The reliability of the scale to assess ADL was synthetized in a review published in 2008 (22), and the cut-off points for the Katz Index to be considered as indicative of functional decline (27) were demonstrated in...
Resumo

Objetivo: Analisar as evidências de validade de constructo do Índice de Katz para a avaliação retrospectiva das Atividades Básicas de Vida Diária (AbVD) por informantes, para apoiar estudos neuropatológicos no envelhecimento. Método: Por meio de estudo transversal foi analisada a capacidade funcional para as AbVD mensurada pelo Índice de Katz em 650 casos randomizados das bases de dados do Banco de Encéfalos Humanos do Grupo de Estudos em Envelhecimento Cerebral (BEHGEEC). A amostra foi particionada transversal foi analisada a capacidade funcional para as AbVD mensurada pelo Índice de Katz em 650 casos randomizados das bases de dados do Banco de Encéfalos Humanos do Grupo de Estudos em Envelhecimento Cerebral (BEHGEEC). A amostra foi particionada

CONCLUSÃO

The Katz Index is a one-dimensional instrument that can be used to retrospectively assess ADL by informants, with construct validity and reliability, despite the presence of cognitive decline.
análise fatorial evidenciou um instrumento unidimensional com ótima consistência interna, em todos os grupos. Ótimos índices de ajuste foram obtidos após o tratamento de duas coviâncias, indicando adequação da escala para avaliar AbVD por informantes. A escala é invariante para o comprometimento cognitivo, o que significa que pode ser usada em indivíduos com ou sem comprometimento cognitivo. **Conclusão:** O Índice de Katz apresenta validade de constructo para a avaliação retrospectiva das AbVD por informantes, com confiabilidade.

DESCRITORES
Atividades Cotidianas; Envelhecimento; Procurador; Psicometria; Estudos de Validação.

RESUMEN
Objetivo: Analizar las evidencias de validez de constructo del Índice de Katz para la evaluación retrospectiva de las Actividades Básicas de Vida Diaria (AbVD) por informantes para apoyar estudios neuropatológicos en el envejecimiento. **Método:** Por medio de estudio transversal se analizó la capacidad funcional para las AbVD mensurada por el Índice de Katz en 650 casos randomizados de las bases de datos del Banco de Encéfalos Humanos del Grupo de Estudios en Envejecimiento Cerebral (BEHGECC). La muestra fue dividida en dos submuestras para los análisis (N=325, cada) y luego estratificada de acuerdo con el compromiso cognitivo determinado por la Escala de Clasificación de la Demencia Clínica (CDR). Se hicieron análisis factorial, de consistencia interna y de invariancia. **Resultados:** El análisis factorial evidenció un instrumento unidimensional con excelente consistencia interna, en todos los grupos. Excelentes índices de ajuste fueron obtenidos después del tratamiento de dos coviâncias, indicando la adecuación de la escala para evaluar AbVD por informantes. La escala es invariante para el comprometimento cognitivo, lo que significa que se puede utilizarla en indivíduos com o sin comprometimento cognitivo. **Conclusión:** El Índice de Katz presenta validez de constructo para la evaluación retrospectiva de las AbVD por informantes, con confiabilidade.

REFERENCES
Validity of the Katz Index to assess activities of daily living by informants in neuropathological studies

