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Abstract

Considering the difficulty of detecting the fault condition of copper flotation 
in real-time, a new fault condition detection method based on the wavelet multi-
scale binary image is proposed. Firstly, the froth gray image is decomposed into 
approximation sub-images and detailed sub-images by wavelet transformation, 
whereby the approximation sub-images of different scales are restructured and 
binarized. Then a new feature that is directly related to froth morphology, namely 
the equivalent size feature, is obtained by calculating the white area of each bi-
nary image according to the space-frequency relationship of a two-dimensional 
wavelet transformation. After this, the equivalent size distribution of the froth 
image can be obtained through the equivalent size feature. At last, the equivalent 
size distributions of different froth images are compared in order to classify the 
froth images under different flotation conditions. Experiment results, together 
with the industrial field data, show that this method can simply and effectively 
detect fault conditions in the copper flotation process.
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1. Introduction

In the flotation process, any inap-
propriate operation or equipment failure 
can lead to a fault condition which will 
ultimately impact the flotation per-
formance. For instance, inappropriate 
chemical-feeding, excessive air pressure 
or any disturbance factor in the flotation 
process will lead to froth abnormalities, 
such as hydration and viscosity, etc. Al-
though the faulty condition is generally 
unlikely to result in the suspension of the 
flotation process, it can certainly influ-
ence the mineral grade, the recovery rate 
and so on (Alldrich C, 2010, REN H F 
et al.,2011, YANG CH H et al.,2009). 
Therefore, the timely and accurate de-
tection of fault conditions is essential 
for the flotation process. However, the 
traditional method of detecting fault 

conditions by the visual inspection of the 
froth surface fails to meet the demand of 
timeliness and accuracy for fault condi-
tion detection. With rapid development 
in computer vision and image processing 
technology, we have made great strides in 
finding an intelligent method for condi-
tion detection with respect to froth flota-
tion features (GUI W H, 2014, Moolman 
D.W, Aldrich C,1994) . LIN Y.Q.et al. 
have established the PCA model based on 
the dynamic weight of texture element 
distribution and have further obtained 
the detection threshold according to the 
statistics of that model, which enables the 
timely detection of fault conditions in the 
flotation process (LIN YQ et al.,2013) 
With the timely and accurate detection 
of fault conditions at the flotation site, 

the flotation control system can adjust 
the production parameters in time, so 
as to keep the flotation process at the 
optimal condition.

Research shows that a morphologi-
cal feature of foam is the comprehensive 
reflection of flotation conditions (CIT 
IR C et al.,2004). An essential part of 
fault condition detection in flotation 
is to accurately extract the froth mor-
phological feature that is closely related 
to production indices in flotation. The 
morphological features of froth includ-
ing color, size, loading rate, velocity and 
stability, etc., which are traditionally 
applied in condition detection for copper 
flotation, are mainly obtained through 
image segmentation (YANG CH H et 
al.,2009, Moolman D.W et al., 1995), but 
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these features that are obtained directly 
through segmentation of the original im-
age do not have the multi-scale property 
(J.M. Parts-Montalban et al.,2011, XU 
C H et al.,2012). A binary image is the 
simplest form for the characterization of 
an image. After a binary image of the 
froth grayscale image is made, statistics 
of the morphological features, such as 
froth number and bubble size, etc. can 
be obtained. Bao Lin et al. have set the 
segmentation threshold for a froth image 
based directly on their experience, so as 
to obtain a binary image of the froth. 
Having achieved this image, statistical 
analysis is done to obtain the bubble size 
distribution, and finally different flota-
tion conditions are identified according to 
the different size distribution of the froth 
(Bao L, Bodil R,2008). Froth features 
obtained directly by binary froth imagery 
do not have a multi-scale property, like 

those produced by image segmentation.
In contrast, wavelet analysis has the 

multi-scale property and can perform a 
multi-channeled time-frequency domain 
analysis of signals by simulation of the 
human vision system, so that more in-
formative statistical froth features can 
be obtained. Gianni Bartolacci et al. 
adopted the wavelet multi-scale analysis 
to extract statistical features from froth 
imagery and used those features as tex-
ture descriptors to differentiate different 
types of froth (Bartolacci G et al.,2006). 
One scholar used the method of wavelet 
transformation to extract texture uni-
formity features, which helped to create 
a quantitative description of the surface 
texture of fine froth. The scholar also 
obtained the best texture range for fine 
froth through experimental analysis, so 
that any change of the flotation condition 
can be monitored in real time (TANG 

ZH H,2011). Although the traditional 
image features extracted through wavelet 
analysis have the multi-scale property, it 
is difficult to adopt this method for the 
direct judgment of the onsite condition, 
due to its great difficulty in describing 
the morphological froth features that are 
easily recognizable for visual inspection 
in practice (Liu J J et al.,2005).

A wavelet multi-scale binary meth-
od is proposed in this paper for the 
feature extraction from the froth image. 
An equivalent size feature (the multi-
scale statistical feature), which is directly 
related to froth morphology, is extracted 
by this method. And this feature is ad-
opted to detect fault conditions including  
hydration froth and viscous froth, etc. in 
copper flotation so as to ensure that the 
overall flotation process is kept at the op-
timal condition by the timely adjustment 
of the production operation.

2. Description of fault conditions in copper flotation

Figure 1 shows the monitoring sys-
tem for the working conditions of copper 
flotation. In this system, the froth video 
from the flotation site is captured by cam-

eras and thus used for real time monitoring 
of the working conditions.

As an important visual feature, 
bubble size can well reflect changes of 

key production indices and technological 
parameters in the flotation process. As 
a result, it is effectively applied in fault 
condition detection for copper flotation.

Figure 2 and figure 3 show re-
spectively froth image under normal 
conditions and that under a fault con-
dition from the copper flotation site. 

Under normal conditions, the froth is 
of a moderate size and froths of dif-
ferent sizes are evenly distributed; the 
hydrated froths are mainly of small 

sizes, with a relatively high mobility; the 
viscous froths are evenly distributed, of 
a relatively high viscosity and generally 
smaller than the normal ones.

Figure 1
Sketch map of condition 
monitoring system in copper flotation

Figure 2
Froth image of normal condition
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In figure 4, the grayscale image of 
the normal froth and its binary image 
are shown under a single scale and thus 
the bubble size feature can be obtained 

by calculating the size of white areas 
in the binary image. Due to the multi-
scale property of wavelet analysis, dif-
ferent sub-images are obtained after 

the wavelet transformation of froth 
image, each of which denotes different 
information about the original image 
at different scales.

In figure 5, the tree mode for wavelet decomposition of the normal froth gray- scale image at level-5 is shown. 

Figure 3
Froth images of fault condition

(a)Hydrated froth 
(b)Viscous froth

Figure 4
Grayscale image 

and binary image of normal froth
(a)Grayscale image

(b) Binary image

Figure 5
Wavelet decomposition of 

normal froth gray image in tree view mode

3. Equivalent size feature extraction based on wavelet multi-scale binary imagery

At first, the r-level wavelet decom-
position of a two-dimensional grayscale 
image               is carried out; at each de-
composition level, the two-dimensional 

wavelet transformation produces an 
approximation sub-image and three 
detailed sub-images at horizontal, verti-
cal and diagonal directions respectively. 

The wavelet transformation at 
each decomposition level is as follows:

It denotes that wavelet multi-scale 
analysis is essentially the simultaneous 
analysis of space and frequency of sub-

images at different levels of decomposi-
tion; in this way, statistical features can be 
more informative than the single-scale in-

formation obtained. However, it is hard to 
directly describe the froth morphological 
feature based on these traditional features.

( )X YI ×
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At each decomposition level, the 
approximation parameter matrix cccc 
and three detailed parameter matrixes 

gggggggggggggggg can be calculated 
by the Mallat algorithm for two-dimen-
sional wavelet decomposition, as shown 

in the following formula:
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In formula (1) and (2), the scaling 
function is FFFFFFFFFFFFFFFFFF and 
the three wavelet functions are:

FFFFFFFFFFFFFFFFFFFFFFF 

and FFFFFFFFFFFFFFFFFF in which

FFFFFFFFFFFFFFFFFFFFFFFFFF             

respectively show the two-scale equa-
tion and wavelet equation in a one-
dimensional perpendicular multi-reso-
lution analysis; the decomposition level 
FFFFFFFFFFFFFFFFFFFF respectively 
represents the rows and columns in the 
parameter matrix FFFFFFFFFFFFFF 
respectively represents the rows and 
columns in parameter matrix FFFFF. 

The coefficient sequence FFFFFF is 
a low-pass filter and FFFFFF is the 
sequential inversion of h, namely 
FFFFFF, while the coefficient se-
quence FFFFFF is a high-pass filter 
and FFFFFFFFFFFFFFFF is the 
sequential inversion of g, namely 
FFFFFF
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Formula (1) is firstly used for the 
first level of a two-dimensional wavelet 
transformation to obtain an approxi-
mation sub-image and three detailed 
sub-images, coefficients of which are 
calculated through formula (2). And then 
formula (1) is used for the level-2 two-di-
mensional wavelet transformation of the 
first level approximation sub-image (low-
frequency part) FFFF which produces a 
level-2 approximation sub-image and 
three detailed sub-images. The process 
then is repeated till the wavelet transfor-
mation of  FFFF at r level is done and 

the multi-scale representation of FFFF 
is obtained (Mallat S G,1989). With the 
increase of decomposition levels, the 
wavelet sub-image is becoming smaller. 
In this case, single-branch reconstruc-
tion is needed to produce the sub-image 
with the same size of the original image 
and to keep the frequency component 
of each sub-image; namely only the 
wavelet coefficient of one sub-image is 
used for signal reconstruction while the 
coefficients of the other sub-images at 
the same level are set as zero. Since the 
approximation sub-image can reflect 

the visual outline of the froth image and 
the detailed sub-images reflect detailed 
changes in the froth image, to acquire the 
bubble size feature, the direction of froth 
the detailed sub-images at different levels 
is not considered and can be ignored 
and as such, only the approximation 
sub-image needs to be reconstructed. 
Mark the approximation sub-images at 
r levels respectively as FFFFFFFFFFFFF, 
which represent the outline part of froth 
sub-image at different scales, with the 
corresponding coefficient sequence be-
ing as follows:

1
,
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vS (v =1,2,…… r )

According to the Uncertainty 
Principle (Vetterli M,1995), the space 
and frequency window areas in wavelet 

multi-scale analysis have the invariance 
property. 

Uncertainty Principle            If we 

define the durations of a signal   in space 
and frequency ω by:

( )f x

 22 2 ( )x x f x dx
+∞

−∞
Δ =∫ (4)

(5)

(6)

 22 2 ( )F dω ω ω ω
+∞

−∞
Δ = ∫

If a unit energy signal         van-
ishes faster than   as , then the product 

of the signal durations is greater than 
or equal to π/2.

( )f x

 2 2

2x ω

π
Δ Δ ≥
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Figure 6
Relationship between
 space and frequency

(7)

Therefore, the bandwidth of each 
restructured sub-image corresponds 
respectively to a different space width. 
In general, a signal with high frequency 
decays fast and correspondingly, a nar-
row space and wide frequency window 

are needed for its decomposition, while 
a signal with low frequency decays 
slowly and correspondingly, a wide 
space and narrow frequency window 
are needed for its decomposition. In this 
way, large-sized froth size can be rec-

ognized by a wideband wavelet at low 
frequency and small-sized froth can be 
recognized by a narrowband wavelet at 
high frequency; namely, different sizes 
of froth can be identified by wavelet 
multi-scale analysis.

Reference (Bharati M.H et al., 
2004, SUN Y K,2012) gives the rela-
tionship between the frequency domains 
of signals at different scales. As shown 
in Figure 6, this space-frequency chart 
tells us the resolutions of the wavelet, 
based on space and frequency domains. 
Due to scaling, the wavelets used in the 
decomposition have varying space and 
frequency resolutions, and the frequency 
duration goes up by 2j while the spatial 
duration goes down by 2j and vice versa. 
In Figure 6, A1-A5 respectively represent 
the approximation sub-images at differ-
ent decomposition scales according to the 
space-frequency relationships between 
differently-scaled discrete signal wavelet 
and the Uncertainty Principle. Assume 

by using the ‘sym’ wavelet function and 
that the froth grayscale image is a one-
dimensional signal with a frequency 
range of 0 ∼ p, then based on Uncertainty 
Principle and Figure 6, it can be seen 
that the frequency ranges for r recon-
structed sub-images are respectively 0 ∼ 
0.5p, 0 ∼ 0.25p, ..., 0 ∼ p/2g and the cor-
responding space widths are respectively  
0 ∼ 1.0 ∼ 2, ..., 0 ∼ 2r-1. If we threshold a 
sub-image, then only the parts of the 
sub-image corresponding to the valleys 
between the bubbles will be removed and 
most of the other parts of the bubbles 
will remain. The area of the remaining 
parts can be thought of as the total area 
of bubbles with sizes corresponding to 
the sub-image. After the relationship of 

the spatial frequency between the differ-
ent approximation sub-images is identi-
fied, the Otsu method (Otsu N,1979) is 
adopted for multi-scale binary process-
ing for r in the reconstructed sub-images, 
namely Sv, so as to obtain the multi-scale 
feature. Then, Sv is further binarized to 
obtain r binary images. Afterwards, 
the total bubble area, namely the size 
of white areas in every binary image, is 
set as A

v
. By subtracting the total bubble 

area of adjacent images, the equivalent 
size of sub-image, E

q
 can be obtained. 

Finally, E
q 
is the equivalent size feature 

obtained through the multi-scale binary 
process and it corresponds to the suc-
cessive range of bubble diameter change: 
1~2,2~4,…, 2r-2 ~ 2r-1.

1q q qE A A+= - , q =1,2,… , r -1  

Since the bubble shape is similar 
to a circle, its area can be calculated 
by p (Dq/2)2, D

q 
whereby is set as 

the average range of the bubble di-

ameter change, which is respectively  
1.5,3,…, 3' 2r-3. Then formula (13) is 
used to calculate the number of bubbles 
at each level, based on which, N

q
 is the 

distribution of equivalent size for froth 
image and can be encountered as follow:
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4. Fault condition detection for copper flotation based on the equivalent size feature of a froth image

5. Experiment and analysis

5.1 Equivalent size feature extraction for normal froth image

Figure 7 shows the process for 
extracting the equivalent size feature 
from the froth image, based on wavelet 

multi-scale binary imagery.
In conclusion, the steps for extract-

ing from the froth image, the equivalent 

size feature based on wavelet multi-scale 
binary imagery are as follows:

Step 1: Make level-r wavelet decom-
position of grayscale image                   ac-
cording to formula (1). At each decom-
position level, the two-dimensional 
wavelet produces an approximation 
sub-image and three detailed sub-imag-
es at horizontal, vertical and diagonal 
directions respectively.

Step 2: Ignore detailed sub-images 
at each level and perform single-branch 

reconstruction of the approximation 
sub-images at each level according to 
formula (3) so as to obtain the recon-
structed sub-image                                   .

Step 3: The approximation sub-im-
ages Sv are binarized based on the Otsu 
method, and then the total froth area 
A

v
 of each binary image is worked out.

Step 4: Work out the equivalent size 
feature of froth, E

q
( q =1,2,……, r-1), 

according to Formula (7).
Step 5: Calculate the equivalent 

average diameter of froth, D
q
, at differ-

ent levels according to Figure 6 and the 
Uncertainty Principle and work out the 
equivalent froth number N

q
 according to 

Formula (8); based on N
q
, the equivalent 

size distribution of froth image can be 
achieved.

vS (v =1,2,…… r )

( )X YI ×

In online detection of the fault 
condition for copper flotation based on 
wavelet multi-scale binary imagery of 
the froth, there are mainly three steps:

Step 1: Select a number of clear 
normal-condition froth images and work 
out the equivalent size feature of each 
image offline.

Step 2: Combine all the equivalent 
size distribution diagrams for normal 
froth images into one and after perform-

ing statistical analysis, determine the 
minimum and maximum value for each 
equivalent size feature.

Step 3: Acquire the online equiva-
lent size distribution of the real-time 
froth image and compare it with the 
equivalent size distribution feature for 
normal froth obtained in Step 2. Accord-
ing to previously determined criterion, 
the production condition corresponding 
to the real-time froth image is identi-

fied so as to detect any fault condition 
in time.

The criterion is set as follows: when 
the number corresponding to each aver-
age diameter in the equivalent distribu-
tion size for the real-time froth image 
falls into the range of the equivalent 
distribution size for the normal froth im-
age, the production condition is consid-
ered as normal; otherwise the flotation 
is considered as under a fault condition.

Collect the froth videos that in-
clude the different working conditions 
under the same feeding conditions as 
shown in Table 1, which should then be 
classified by an expert. For this study, 
1200 froth images corresponding to the 
“normal” condition were selected in 
order to extract the equivalent distribu-
tion size, i.e. obtain the minimum and 
maximum frequencies of all the bubbles 
with an equivalent diameter.

Firstly, the normal-condition froth 

grayscale image from the flotation site 
is used for the 5-level wavelet decom-
position, after which, 5 approximation 
sub-images (A1~A5) are obtained, The 
spatial frequency relationship between 
the different sub-images is shown in 
Figure 6.

Secondly, the approximation 
sub-images at each level are binarized 
and the total froth area of each recon-
structed binary image is calculated, so 
as to obtain the equivalent froth size 

feature. The froth number correspond-
ing to each equivalent diameter average 
is worked out according to Formula (13) 
and Figure 6, and thus the equivalent 
size distribution for each reconstructed 
sub-image of the normal froth image is 
obtained. Afterwards, different equiva-
lent size distribution diagrams are com-
bined into one for statistical analysis, 
and the equivalent size distribution for 
the normal froth image is obtained as 
shown in Figure 8.

feeding ore grade 

(GCu)

concentration 

(%)
pH value particle size(%)

min 0.85 25 10 65

max 1.12 32 12 70

Table1 
The feeding ores condition
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Equivalent size 

distribution of normal froth image

5.2 Fault condition detection for copper flotation
Fault conditions detected at the flo-

tation site are greatly different from the 
normal condition. In the case of viscous 
froth, the number of large bubbles is rela-
tively low while that of small bubbles is 
relatively high; while the size distribution 
of hydrated bubbles is mainly concen-
trated in the small-size range.

Collected were 600 froth images 
including “normal” and “fault” word-
ing conditions, which is the test data set 
Dc         .Firstly, upon expertly classifying 
the test set of 600 roughing froth images 
there were 280“normal”condition froth 
images 180 “fault” condition hydrated 
froth images, and 140 viscous froth im-

ages. Then, extract the equivalent size 
features of each piece of froth image and 
detect the working condition based on the 
criterion. As shown in Figure 9 the equiva-
lent size distributions correspond to the 
froth images of two types fault conditions, 
namely hydrated froth and viscous froth, 
which respectively corresponding to the 
“black” and “gray” legend. According to 
the predetermined criterion, the number 
corresponding to the equivalent size fea-
ture of hydrated and viscous froth images 
falls out of the normal range; therefore, 
the two conditions can apparently be 
determined as fault conditions.

In a word, through the comparison 

between the equivalent distribution size 
of the normal froth and that of the real-
time froth on the basis of predetermined 
criterion, detection of the flotation condi-
tion can be realized in real time. If the 
fault condition is determined, relevant 
adjustment of the production operation 
should be made to ensure that the overall 
production process is kept at the optimal 
condition.

The experimental results are shown 
in Table 2. Among them the recognized 
accuracy rate of the hydrated froth images 
is 96.7% the average recognized accuracy 
rate of the hydrated froth images and 
normal images is 91.15%.

(600'  4)

Table2 
Working condition 

detection results based 
on equivalent distribution size feature

normal froth images hydrated froth images viscous froth images

Expert classification 280 180 140

System classification 254 174 152

Error numbers 26 6 22

The accuracy rate 90.8% 96.7% 91.5%
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Equivalent size distributions 
of froth images of fault condition

6. Conclusion

In fault condition detection, ex-
traction of the morphological feature 
from the froth image is a vital step. With 
regards to the froth imagery of copper 
flotation, this paper proposes that the 
wavelet multi-scale binary process can be 
adopted for extraction of the equivalent 
size feature from the froth image, and 
that this feature can be used as the basis 
for fault condition detection in copper 
flotation. Unlike the traditional feature 

extracted by wavelet multi-scale analysis, 
the equivalent size feature is an effective 
representation of the original image at 
different scales. This feature is directly 
related to froth surface morphology and 
has a multi-scale property; therefore, it can 
capture the morphological feature more 
informatively than the single-scale feature. 
Based on the experiment with real froth 
images acquired at the flotation site, it is 
shown that the wavelet multi-scale binary 

method for extraction of the equivalent 
size feature proposed in this paper, to-
gether with the fault condition detection 
method that compares the equivalent size 
distribution of the real-time froth image 
with that of the normal image, can detect 
the fault condition in copper flotation in 
a direct and simply manner. Therefore, 
these two methods are of relatively great 
theoretical significance and can be pro-
moted in practice.
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