Ewing’s Sarcoma: imaging findings of a patient with primary tumor in the femur and mandibular metastasis

Sarcoma de Ewing: achados imaginológicos de um paciente com tumor primário no femur e metástase mandibular

INTRODUCTION

Ewing’s Sarcoma (ES) was first described by James Ewing in 1921 [1] and it is a common primary bone malignancy that usually occurs in childhood and young adults. It is the second most common bone malignancy in children, after osteosarcoma [2]. Histologically, ES is a small round cell tumor and its pathogenesis remains uncertain, although there is evidence of a neuroectodermal origin [3]. Most patients with ES have a common chromosomal translocation involving t(11;12)(q24;q12) [4]. In the WHO classification, the term ES comprises five entities: classical ES, Askin tumor (small round cell tumor of the chest wall), primitive neuroectodermal tumor (PNET), atypical ES and
extra skeletal ES [5]. ES has a predilection for the male gender and occurs mostly in the diaphysis of long bones and pelvis [6]. This tumor rarely affects the head and neck, with an incidence of 1% to 9% of all cases. Less than 3% originate in the jaws and the posterior mandible is the most common site [7]. The most common symptoms of ES are localized pain that appears before imaging alterations and intensifies over time, followed by swelling. Other symptoms include fever, anemia and leukocytosis [8]. Radiographic findings of ES show an osteolytic lesion that is not a pathognomonic feature [9]. In the mandible these lesions are characterized by a periosteal reaction named “sun ray” spicules and in long bones the image finding is characterized by an appearance of “onion skinning” [10,11]. Other diseases such as osteosarcoma, lymphosarcoma, osteomyelitis and metastatic carcinoma may also exhibit this pattern [12]. Due to the low incidence of ES in the jaws, it is rarely considered in the differential diagnosis of radiolucent lesions [13]. Treatment of ES usually consists of combined surgical resection, radiotherapy and chemotherapy [14]. Metastasis occurs in up to 85% of patients within 2 years of diagnosis [15]. The presence of metastasis at the time of diagnosis is very important for prognosis [16]. We present the imaging findings of a rare case of a patient who presented a primary ES diagnosed in the femur, with occurring metastasis in the mandible.

CASE REPORT

Figure 1, the patient, a 6-year-old girl complaining of pain and swelling in her left leg was diagnosed with ES after the conventional radiograph was taken, and magnetic resonance imaging (MRI) and incisional biopsy were performed at an oncology center.

Shows the conventional radiograph with the presence of a radiolucent area with periosteal reaction in the distal region of the diaphysis on the left femur. The hypointense area on the T1-weighted magnetic resonance imaging of the femur with fat suppression after contrast, revealed an expansive mass, involving the cortical and the presence of extensive periosteal reaction (Figure 2).

The treatment was radical surgery with amputation of the leg and adjuvant chemotherapy. The patient was rehabilitated with a metal prosthesis later. After eighteen months, the patient had pain and swelling in the left side of the mandible. A computed tomography (CT) exam was performed, and in the sagittal and axial sections it revealed a destructive lesion with bone expansion and periosteal reaction in the ascending branch of the mandible on the left. (Figure 3A and 3B).
The coronal slice revealed the presence of destruction of the buccal and lingual cortical (Figure 4A). The soft tissue window showed the presence of an extra-osseous tumor mass (Figure 4B).

An incisional biopsy was performed and confirmed an ES. Patient underwent chemotherapy and after one year of treatment, a coronal slice of the computed tomography exam showed reduction of the lesion (Figure 5).

ES frequently grows rapidly and causes distant metastasis, particularly in the lung, bone marrow and bone [18]. In the present case, the patient had an ES in the mandible after the presence of the primary tumor in the femur. In new cases, 20% to 30% are metastatic [19,20]. Approximately 10% of reported cases occurring in the mandible are metastases [21]. The 5-year survival rate of patients with metastasis at diagnosis is approximately 20% [22]. In 30% to 40% of patients, recurrent tumors present either locally, distally or both [23]. Could this case represent an undetected bone metastasis during initial diagnosis? Therefore, an accurate assessment of patients with ES must be made to detect the extent of the primary tumor and a possible metastasis, to ensure an effective treatment. The association of the conventional imaging methods such as radiography, CT, MRI, combined with scintigraphy or Positron Emission Tomography/Computed tomography PET/CT that assess the metabolic activity of cancer cells, is essential for correct diagnosis of ES [24]. In the present case, MRI demonstrated the extension of the primary lesion and its relationship with the other anatomic structures such as the muscles. The coronal CT images of mandible showed destruction of the buccal and lingual cortical. In the window for soft tissue, an extra osseous mass was shown. CT was also used in the control of lesion after one year and showed a reduction in lesion. However, these methods only are limited for this evaluation. In this case, the association of other imaging methods such as scintigraphy or PET/CT should have been performed initially to detect metastasis and to evaluate the therapeutic response [24]. Scintigraphy detects metastasis indirectly by bone remodeling and PET/CT identifies lesions based on metabolic activity.

DISCUSSION

ES is the second most frequent primary bone tumor in children and occurs mostly in the long bones [2]. It is very rare in the jaws and may result from metastasis from another skeletal site [17]. The present case demonstrated a rare case of a patient with a primary tumor detected in the femur and a metastasis in mandible, diagnosed within a period of eighteen months. Up to 85% of patients have metastases within 2 years after diagnosis [15]. ES is a destructive osteolytic lesion that extends into the cortical, periosseum and soft tissues. This feature observed in X-rays is not pathognomonic and other lesions can have the same image pattern [9]. Some findings, such as the presence of a soft tissue mass and the patient’s age may contribute to the formulation of ES diagnosis. The final diagnosis is confirmed after biopsy and histopathological analysis.

CONCLUSION

The use of different modalities of images in the diagnosis of ES is very important for evaluation, treatment
and prognosis of this neoplasm.

Collaborators

All authors participated in the writing and revision of the manuscript. Marcelo Garcia made the acquisition and interpretation of the images of the femur region. Fabrício R. Amaral, Amaro I.V. Silva, Cláudia S. Valério, Cláudia A.A. Cardoso e Flávio R. Manzi evaluated the patient and made the acquisitions and interpretation of the images of the orofacial region.

REFERENCES

Received on: 11/9/2017
Final version resubmitted on: 21/11/2017
Approved on: 1/12/2017