SUBCUTANEOUS MUCORMYCOSIS CAUSED BY RHIZOPUS ORYZAE
PROBABLE NOSOCOMIAL ACQUIRED INFECTION (*)

Flávio de QUEIROZ TELLES FILHO (1,4), Affonso COELHO (2), Edward PORTO (3), Rosângela Ferreira LAMEIRA (4), Marli Maria FREITAS (5), Janio BARBOZA (5) and Jorge Luiz Zanette RAMOS (5)

SUMMARY

The Authors present a case of subcutaneous mucormycosis occurring in a patient with clinical and biochemical evidence of diabetic ketoacidosis. The clinical, mycological and histopathological features are described, emphasizing the relevance of a rapid diagnosis in order to establish early treatment. The clinical forms of mucormycosis and the main associated conditions are briefly reviewed as well as the most probable conditions which may lead to the enhanced susceptibility to infection in the diabetic patient in ketoacidosis. The recovery of Rhizopus oryzae from the air of the room of the patient suggests a nosocomial infection acquired through contamination of venous puncture site by air borne spores.

INTRODUCTION

The human infections caused by fungi of the class Zygomycetes are cosmopolitan and have been reported in normal and immunocompromised hosts. The disease has been generically called Zygomycosis (Phycomycosis). GREER 12 suggested the terms Mucormycosis and Entomophtoromycosis to name the infections restrictly caused by Zygomycetes of the orders Mucorales and Entomophthorales, since they are different diseases. The human mucormycosis is world-wide in distribution often as an opportunistic infection and rarely affecting immunologically normal individuals. Frequently it is a disease of acute evolution, characterized by invasion and growth of Mucorales in the vascular wall and lumen, with subsequent mycotic thromboembolism, ischemia, tissue necrosis and eventually death depending on the effected site. The rhino-cerebral variant is the most acute and fulminating of the known mucosises. The entomophthoromycosis, also known as subcutaneous zygomycosis or basidiodolomycosis, is restricted to tropical and subtropical regions, being reported the cases mainly from Africa and Asia, and occasionally from South America. Generally it has a chronic evolution characterized by the development of eosinophilic granuloma in the subcutaneous fat, rhino-orbital cavities and other areas of the organism, with swelling of the affected regions. The patients are apparently healthy.

The agents of mucormycosis are ubiquitous in nature, where they live on decaying organic material as saprophytes. They may be isolated from the air, soil, fruits, clinical materials and human orifices. They reproduce by sexual and asexual ways and in the anamorphic (asexual) state form a great amount of spores inside sacular structures called sporangia. The principal way of dissemination is the air. The genera of the order Mucorales related as the
cause of mucormycosis are the following: Rhizopus, Mucor, Absidia, Rhizomucor, Mortierella, Cunninghamella, Saksenaea and Syncephalas-trum.

The first case of mucormycosis, according to RIPPSON, was reported by PALTAUF in 1885. There are approximately 400 cases of different clinical manifestations actually described. During the last two decades there was a significant increase in number mainly related to diabetic ketoacidosis and immunodepression. The primary or exogenous cutaneous and subcutaneous mucormycosis is a rare occurrence and the way of infection is related to the rupture of the skin barrier with subsequent development of necrotic lesions in the skin or subcutaneous iat. Recently microepidemics of cutaneous mucormycosis were reported in hospitals and were related to the use of elasti-cized adhesive tape dressings on open wounds in immunocompromised patients as well as patients with orthopedic problems and without apparent immunological change. The reports with histological study and mycological identification, especially in hospital acquired cases are rare.

REPORT OF THE CASE

A.S.F., 61 years old, white, male, diabetic, was admitted to the emergency room of “Hospital de Clínicas da Universidade Federal do Parana”, in keto-acidotic coma. He was decompensated because of irregular use of insulin, irregular diet and two abscesses in the left thigh. He was comatous, dehydrated, with the following laboratory findings: Red blood cell count, 4,040,000/mm³; total white blood cell count, 10,700/mm³ and a differential count as follows: polymorphonuclear leukocytes, 77%; lymphocytes, 20%; and monocytes, 3%. Blood urea nitrogen 34 mg/100ml; serum creatinin, 3.8 mg/100 ml; blood glucose 694 mg/100 ml. Serum electrolyte estimation showed the following levels: sodium, 136 mEq/l; potassium, 4.6 mEq/l. Arterial gases: pCO₂, 8.2 mmHg; pO₂, 123 mmHg; buffer base, 16; base excess -32; pH 6.84; HCO₃, 1.4 μEq/l.

He was routinely treated and the abscesses were drained. On the second day of admission he was conscious and the ketoacidosis was partially corrected. On the fourth day there was a hemorrhagic and vesicular lesion on the left forearm in the area where a venous puncture for fluid and electrolytes administration was done. This area was involved with elasticized tape dressing. At the same time the patient developed ketoacidosis again. In 24 hours the forearm lesion progressed to an extensive fagedenic ulceration with irregular margins, showing the muscle tendons and measuring 12 x 8 cm (Fig. 1A). A fragment to the margin was removed and sent to bacteriological, mycological and histopathological examination.

Bacteriology — Bacterial cultures of the ulceration showed *Staphylococcus aureus* growth.

Mycology — The tissue fragment was sectioned in asseptic conditions and small portions were mounted in 40% potassium hydroxide on a microscope slide and covered with a cover slip. Fragments were also placed in Petri dishes with Sabouraud’s agar/cloramphenicol and incubated at 37°C and room temperature (25°C).

Direct microscopic examination: after 15 minutes of tissue digestion a mass of intertwined hyphae were seen among the cell clusters in decomposition. After 4 hours, with better clarification, there was a great amount of thick, hyaline tortuous, coenocytic right-angled hyphae, with no perfect parallel walls suggesting tissue invasion by *Mucorales*.

Culture — After 24 hours in all incubated plates the tissue fragment and the area of agar 3 cm around were covered by clear web like mycelium with radiated margins. At the microscope (400x) it seemed sterile with an intense cytoplasmatic flux inside the coenocytic hyphae. After 4 days the plates were totally covered by an elevated cotton-like, brownish-gray mycelium with small dark points. The slide culture showed sporangia with no or slightly branching, emerging in opposition to poor developed rhizoids, which is characteristic of *Rhizopus sp*.

Incubated samples in different temperatures showed a positive growth at 45°C. Further subcultures were sent to Prof. Edward Porto, “Instituto de Medicina Tropical de São Paulo”, who identified the *Mucorales* as *Rhizopus arrhi-
This fungus is now considered as synonym of *Rhizopus oryzae* WENT & PRINSEN GEBLIS, 1895.

Histopathology — There was extensive necrosis of skin and subcutaneous fat with acute inflammation. Scattered among the polymorphonuclear neutrophils were numerous broad non septated right angled branching hyphae easily recognized in the hematoxylin eosin stained slides (Fig. 1, C, D). Special staining by...
Grocott methenamine silver nitrate technique emphasized the contrast between the fungus and the tissue. There was no vascular invasion in sections.

Evolution — After the results from the direct mycological examination, the patient received amphotericin B by venous route and local therapeutics with 1.5% amphotericin B cream. After completing 75 mg of systemic administration the diabetes was compensated, showing blood glucose of 173 mg/100 ml and normal arterial gases. The tissue specimens still showed the presence of hyphae on histological and mycological examinations. After completing 725 mg of amphotericin B the levels of blood urea and serum creatinin were elevated and the drug was interrupted. The diabetes again showed ketoacidosis. After correcting the ketoacidosis and the reintroduction of amphotericin B, a progressive change in ulceration was noticed with development of granulation tissue and no secretion.

Two months after admission, after a total dose of 1,775 mg of amphotericin B and daily 40 units of NPH insulin, diabetes was controled and the cutaneous lesion reduced to 5 x 3 cm with granulation tissue, and the patient was clinically well.

Attempts of fungi isolation from the hospital environment

Ten rolls of elastic opened or not adhesive bands from several areas in the hospital were sectioned with sterile scissors in small strips and placed on the surface of Sabouraud dextrose agar. To ensure contact with the agar, the strips were moistened with a small amount of 5% sterile glucose solution. After one week incubation, several contaminant fungi were grown, but none was identified as Mucorales. Eight plates of Sabouraud dextrose agar were settled in the room where the patient stayed, during a period of 6 hours, coincidentally with the most active work hours. After seven days incubation several contaminant fungi have grown and in two plates of the same room, together with colonies of Penicillium sp. and Aspergillus sp.; there was the development of Rhizopus oryzae.

DISCUSSION

According to reports on mucormycosis, the primary invasion of the skin and subcutaneous tissue by *Mucorales* occurs in less than 10% of the cases. Due to the possibility of internal dissemination from primary skin lesions, the disease must be promptly recognized accordingly, and treated. In the case of ketoacidosis associated with rapidly progressive skin ulceration, the direct microscopical examination with potassium hidroxide is conclusive for treatment. When correctly interpreted the direct examinations allows the institution of therapeutics until the tissue invasion is confirmed by biopsy. The isolation of *Mucorales* in culture, without evidence in the direct or histopathological examination may only indicate a fungal contamination.

The association of mucormycosis and diabetic ketoacidosis is recognized in about 50% of the clinical cases. The main underlying factor seems to be acidosis. ELDER & BAKER demonstrated experimentally that hyperglycemia “per se” is not enough to favour the infection in rabbits, but when associated with internal acidity it causes the progression of the infection to a definitive disease. Several changes related to the inflammatory response and phagocytosis have been described in diabetic ketoacidosis. Recently it was reported that “in vitro” the serum of patients in ketoacidosis, shows a significant decrease in transferrin capacity to bind iron and this alteration abolishes important host defense mechanisms. Probably there are other factors related to the susceptibility of these individuals to the fungus infection. The thermophily of some *Mucorales* associated with the affinity to acid pH culture media and the high glucose concentration make the keto-acidotic blood the ideal “habitat” for the fungus, especially when the immunological response is decreased.

The conditions described in association with the break of skin barrier in some cases of cutaneous or subcutaneous mucormycosis are: combination of heat, local pression and epidermal maceration under contaminated dressings; surgical skin incisions; corticosteroid intramuscular injection; burns and even apparently normal skin. *Rhizopus sp.* is
the agent most frequently isolated9,10,15 and when the specific identification was possible, \textit{R. oryzae} and \textit{R. rhizopodiformis} were found11,15. Although we did not isolate any \textit{Mucorales} from the dressings in our patient, the possibility that a contamination of the venous puncture site could occur cannot be ruled out. On the other hand, the isolation of \textit{R. oryzae} from the patient’s room make it possible that the venous puncture site infection has been caused by a contamination by air borne spores.

RESUMO

Mucormicose subcutânea causada por \textit{Rhizopus oryzae}. Provável infecção hospitalar

Os Autores relatam caso de mucormicose subcutânea em paciente apresentando quadro clínico e laboratorial de ceto-acidose diabética. São descritos os aspectos clínicos, micológicos e histopatológicos, salientando-se a importância da obtenção do diagnóstico rápido para a instituição da terapêutica precoce.

São revistas as formas clínicas da mucormicose e as principais condições associadas, bem como os possíveis mecanismos que facilitam a infecção por \textit{Mucorales} em pacientes com ceto-acidose diabética.

O isolamento de \textit{R. oryzae} do ambiente onde o paciente esteve internado, sugere tratar-se provavelmente de infecção hospitalar adquirida por contaminação venosa através de esporos do fungo.

REFERENCES

Recebido para publicação em 14/6/1984.