Labrea Hepatitis (Labrea Black Fever) is a severe liver disease found in several hamlets of the Amazon Region, where microepidemics are reported. This morbid condition is known to occur specifically in this region, where children and young adults are mainly affected. The clinical picture is similar to that seen in fulminant forms of viral and toxic hepatitis, and courses with a high degree of lethality. Pathological studies have shown diffuse liver damage, with an outstanding degree of hepatocellular necrosis and degenerative phenomena, among which the most striking one is fatty change mainly of the microvacuolar type. This pattern, in which small fat droplets surround a centrally placed nucleus, has been called "morula-like" cells by Brazilian authors and is thought to be a distinctive feature of Labrea Hepatitis, as compared with other forms of fulminant hepatitis. Recent studies suggest that the Hepatitis B Virus (HBV) might be related, at least partially, to the etiopathogenesis of this disease.

The Delta Agent, described by RIZZETO et al. in 1977, is now considered to be a defective virus (HDV), which needs the HBV and, especially, its surface antigen (HBsAg) for infection, replication and expression. It has been shown that the HDV can cause, by coinfection with HBV or by superinfection in HBsAg carriers, nearly always, severe acute or chronic liver disease, usually more aggressive than liver damage caused by the HBV alone.

Seroepidemiologic studies have recently characterized the Amazon Region as a high endemicity area for both viruses HBV and HDV.

The present communication intends to assess the expression of HBV and HDV antigens in liver tissue and their possible role in the etiopathogenesis of Labrea Hepatitis.

Autopsy samples of liver tissue were obtained from three patients who died with a clinical picture of fulminant hepatitis, and in whom a histological diagnosis of Labrea Hepatitis was performed. All of them died in far away small villages of the State of Amazonas, Brazil, and tissue samples were referred to the Instituto de Medicina Tropical de Manaus. For this reason, clinical data were scarce and no serological markers could be tested. The available information is displayed in Table I.

TABLE I

<table>
<thead>
<tr>
<th>Case No.</th>
<th>City</th>
<th>River</th>
<th>Age (years)</th>
<th>Sex</th>
<th>Onset of symptoms to death (days)</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Tapauá</td>
<td>Purus</td>
<td>14</td>
<td>M</td>
<td>4</td>
</tr>
<tr>
<td>2</td>
<td>Labrea</td>
<td>Purus</td>
<td>3</td>
<td>F</td>
<td>3</td>
</tr>
<tr>
<td>3</td>
<td>Itacoatara</td>
<td>Amazonas</td>
<td>11</td>
<td>F</td>
<td>3</td>
</tr>
</tbody>
</table>

This research was partially supported on Grant n.º 43.83.0056.00 from FINEP, Brasil

(1) Instituto de Medicina Tropical de Manaus
(2) Faculdade de Medicina da Universidade de São Paulo — Unidade de Fígado
(3) Instituto Adolfo Lutz and Faculdade de Medicina da U.S.P. (Deppto. de Patologia)
(4) Fundação Oswaldo Cruz
Tissue samples were fixed in formalin, routinely processed in Auto-Technicon (Technicon Co., U.S.A.) and embedded in paraffin blocks; four micra thick sections were submitted to impregnation of the reticulin framework by silver and stained by Hematoxylin-Eosin.

For the detection of HBsAg and HBCAg, the highly sensitive Peroxidase-Antiperoxidase (PAP) method10 was used. The indirect method was used for the detection of Delta Antigen (HDAG), since Anti-Delta Antibody is a Human IgG. For each reaction, positive and negative controls were tested.

In all three cases, HBsAg was detected in small or moderate amounts of hepatocytes, always with a segmental cytoplasmic pattern. HBCAg was detected in very few nuclei, in only one of the cases. On the other hand, HDAG was strongly positive in a great amount of liver cell nuclei, especially in those of "morula-like" cells. Some of them corresponded to irregularly enlarged nuclei found in sections stained by H.E. In Table II, semi-quantitative data concerning antigen expression in liver tissue are presented whereas histopathological aspects and localization of antigens in hepatocytes are depicted in Fig. 1.

<table>
<thead>
<tr>
<th>Cases No.</th>
<th>HBsAg</th>
<th>HBCAg</th>
<th>HDAG</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>+</td>
<td>-</td>
<td>+++</td>
</tr>
<tr>
<td>2</td>
<td>+</td>
<td>-</td>
<td>++</td>
</tr>
<tr>
<td>3</td>
<td>+</td>
<td>+</td>
<td>+++</td>
</tr>
</tbody>
</table>

It is a well known fact that co-infection of HBV and HDV6,10 and, specially, super-infection of HBV carriers by HDV7,10 can lead to fulminant hepatitis or to more severe forms of HBs positive chronic liver disease10,12,14. These findings were recently reported in the Venezuelan part of the Amazon Basin, where a 3-year survey was done in 149 Yuca Indians who developed hepatitis7.

In the present study, histopathological findings from patients who died of fulminant hepatitis are different from those of massive or sub massive hepatic necrosis found in ordinary fulminant viral hepatitis: instead of extensive areas of collapse of the reticulin framework, these regions are scarce; this finding as well as the great amount of "morula-like cells", characterized by the presence of small fat droplets, suggest a very strong and rapid block of liver cell function such as that found in Reye's Syndrome, Fatty Change of Pregnancy or due to the toxic effects of large doses of Tetracycline8. On the other hand, several cells presented enlarged nuclei with irregular borders, which could be related to a cytopathic viral effect. The fatty change and the scarcity of the mononuclear infiltrate as seen in our cases, would be other arguments favoring this hypothesis.

Furthermore, for the first time, simultaneous presence of HBV and HDV antigens is reported in Labrea Hepatitis, and emphasis should be put on the fact that HDAG was detected in large numbers of liver-cell nuclei, many of them belonging to "morula-like" cells.

The behaviour of Delta Antigen expression in liver cell nuclei in all of the three cases is similar to that described by RIZZETTO et al. in the early phases of experimental infections in chimpanzees13 and, upon this fact, one could speculate that Labrea Hepatitis could be caused either by co-infection of HBV and HDV or by super-infection of HDV upon chronic carriers of HBV.

Finally, our findings on the histopathologic features of Labrea Hepatitis, and especially on the expression of HDAG in liver-cell nuclei, preferentially in "morula-like" cells, are very close to those described by POPPER et al.9 in autopsy specimens obtained in Venezuela from Yucpa Indians. These similarities could suggest an identity between these two entities, suggesting also an etiologic role of HDV in both of them.

ACKNOWLEDGEMENTS

The Authors are deeply indebted to Dr. J. Rodes, from Barcelona, Spain, who provided the Anti-delta antibody, and to Drs. C. Trepo from Lyon, France and M. Rizzetto, from Turin, Italy, who provided the delta positive controls.
Fig. 1 — A) Case number 3 — HBsAg is found into the cytoplasm of some liver cells (PAP-Hematoxylin, 100x); B) Case number 3 — HBsAg expression in scarce nuclei of hepatocytes (PAP-Hematoxylin, 200x); C) Case number 1 — A great amount of liver-cell nuclei contains the HDAg (PAP-Hematoxylin, 100x); D) Case number 2 — Two "morula-like" cells, with abundant microgoticular fatty change, present HDAg into enlarged nuclei (PAP-Hematoxylin, 400x)

REFERENCES

