SHORT COMMUNICATION

ABSENCE OF NATURAL INFECTION BY SCHISTOSOMA MANSONI IN WILD RODENTS CAPTURED IN ENDEMIC AREAS FOR SCHISTOSOMIASIS IN THE STATE OF ALAGOAS, BRAZIL

Pedro Paulo CHIEFFI(1), Kurt KLOETZEL(2) & José G. Vergetti de SIQUEIRA(3)

Wild rodents and other small mammals harbouring infection by Schistosoma mansoni have been found in several endemic areas for schistosomiasis in Brazil. In some of these regions certain rodent species - mainly Nectomys squamipes and Holochilus brasilensis - have been stressed as important natural reservoirs of S. mansoni.

In some Caribbean Islands, Rattus rattus specimens have often been found naturally infected by S. mansoni; in addition, S. mansoni strains naturally adapted to both human and rodent hosts have been found. In fact, neither the role of non-human vertebrates as S. mansoni natural reservoirs, nor the natural maintenance of this trematode without human participation have been consensually accepted by all the epidemiologists who studied this question.

The municipality of Branquinha, 60 km far from Maceió, capital of the State of Alagoas, is located in a region endemic for schistosomiasis, where high rates of human infection have been found. In this region we attempted to determine the prevalence of S. mansoni infection in wild rodents caught near human settlements, where schistosomiasis transmission foci for active transmission had been detected.

Seventy-four wild rodents belonging to five different species (Table 1) were caught alive in special traps and transported to a local laboratory and, under anesthesia, were submitted to portal perfusion with the aim of recovering S. mansoni specimens. Immediately after portal perfusion the liver was sliced, then pressed between two large glass plates, in order to identify S. mansoni specimens not recovered by perfusion as well as eggs trapped within the sinusoidal spaces. Simul-

<table>
<thead>
<tr>
<th>Rodents</th>
<th>Number</th>
</tr>
</thead>
<tbody>
<tr>
<td>Rattus rattus</td>
<td>39</td>
</tr>
<tr>
<td>Holochilus brasilensis</td>
<td>13</td>
</tr>
<tr>
<td>Nectomys squamipes</td>
<td>10</td>
</tr>
<tr>
<td>Oryzomys sp.</td>
<td>8</td>
</tr>
<tr>
<td>Galea spixii</td>
<td>4</td>
</tr>
<tr>
<td>Total</td>
<td>74</td>
</tr>
</tbody>
</table>

(1) Tropical Medicine Institute (LIM06) and Preventive Medicine Department (Medicine School University of São Paulo), Brazil.
(2) Secretary of Health and Hygiene of Santos (State of São Paulo), Brazil.
(3) Federal University of Alagoas, Brazil.
Correspondence to: P.P. Chieff, Tropical Medicine Institute, Av. Dr. Enéas C. Aguiar 470, 05403-000 São Paulo, S P, Brasil.
taneously, fecal samples from the rodent bowels were examined for *S. mansoni* eggs.

The examined rodents did not present any evidence of *S. mansoni* infection, despite high prevalence rates for human schistosomiasis in the same region. These results suggest that, on the contrary to the situation found in other areas, schistosomiasis transmission in Branquinha depends only on the presence of humans infected by the trematode. Consequently, although in some endemic areas for schistosomiasis in Brazil the infection seems to show a zoonotic behavior as a result of adaptive evolution in Branquinha, *S. mansoni* should still be considered as an anthropopotic infection.

REFERENCES

Recebido para publicação em 08/04/1994
Aceito para publicação em 25/05/1994