CENTRAL NERVOUS SYSTEM VIRION DETECTION IN ACUTE MEASLES: HISTOPATHOLOGICAL, ULTRASTRUCTURAL AND PATHOGENETIC ASPECTS

C.L.P. LANCELLOTTI (1), C.E.P. CORBETT (2) & M.I.S. DUARTE(2)

SUMMARY

Histopathological and ultrastructural studies of 23 patients who died with clinical diagnosis of measles were carried out. In 12 cases viral nucleocapsids were searched by electron microscopy and detected in 100% of the cases in the lungs and in 50% of the cases in the central nervous system. They were mostly intranuclear. Histopathological changes associated to neurological alterations and the detection of virion are discussed in relation to acute and delayed clinical manifestations.

KEYWORDS: Measles; Virus; Central Nervous System; Pathology; Ultrastructure; Pathogenesis.

INTRODUCTION

Neurological clinical signs in measles have been described due to either acute or delayed central nervous system involvement. Acute involvement has been described and sequelae in 30-35% of the cases. Disseminated mild peri-vascularitis is most frequent in the early phases. Later demyelination appears together with inflammatory changes. No virus was detected either in brain or cerebrospinal fluid in the acute phase. Late neurological complications of measles such as acute delayed encephalitis and subacute sclerosing panencephalitis have been reported. In cases of subacute sclerosing panencephalitis viral antigens were found by immunohistochemical methods and virions were seen by electron microscopy in brain tissue. Recently, multiple sclerosis has also been related to measles.

Neuropathological changes were described in acute measles, but no virus was detected in brain tissue neither by electron microscopy nor immunohistochemistry. The pathogenesis of the brain lesions is not known.

MATERIAL AND METHODS

Brain, lung and lymph node tissue obtained from autopsies of 23 patients who died with clinical diagnosis of measles were collected for histopathological and ultrastructural studies.

In each case, the brain was sliced and 80 to 100 fragments from all cerebral regions and spinal cord...
RESULTS

The age of the patients varied from 22 days to 10 years, 13 were male and 10 female. Malnutrition was present in 78.9% of the cases. The time from prodromal phase to death varied from 10 to 48 days. Neurological signs were present in 8 out of 23 patients and appeared between 2 and 21 days after the onset of the cutaneous rash (Table 1).

The lungs showed interstitial pneumonia in 100% of the cases, epidermoid hyperplasia of tracheal and bronchial epithelium in 73.9%, syncytial multinucleated cells in 65.2%, hyaline membranes in 52.1%, necrotizing bronchiolitis in 47.8% and bronchopneumonia in 95.6% of the cases. The lymph nodes showed

<table>
<thead>
<tr>
<th>Nº</th>
<th>Age</th>
<th>NN</th>
<th>Time of Disease (days)</th>
<th>neuropathology</th>
<th>Virus</th>
<th>EM</th>
<th>Immunohistology</th>
<th>CNS</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>1y3m</td>
<td>-</td>
<td>10</td>
<td>Meningitis</td>
<td>+</td>
<td>+</td>
<td></td>
<td>3</td>
</tr>
<tr>
<td>2</td>
<td>1y</td>
<td>+</td>
<td>30</td>
<td>Perivasculitis</td>
<td>+</td>
<td>-</td>
<td></td>
<td>0</td>
</tr>
<tr>
<td>3</td>
<td>9m</td>
<td>-</td>
<td>20</td>
<td>-</td>
<td>+</td>
<td>+</td>
<td></td>
<td>0</td>
</tr>
<tr>
<td>4</td>
<td>7m</td>
<td>-</td>
<td>20</td>
<td>Meningitis</td>
<td>+</td>
<td>-</td>
<td></td>
<td>3</td>
</tr>
<tr>
<td>5</td>
<td>1y3m</td>
<td>-</td>
<td>10</td>
<td>-</td>
<td>+</td>
<td>-</td>
<td></td>
<td>0</td>
</tr>
<tr>
<td>6</td>
<td>7m</td>
<td>-</td>
<td>24</td>
<td>Perivasculitis</td>
<td>+</td>
<td>+</td>
<td></td>
<td>1</td>
</tr>
<tr>
<td>7</td>
<td>4m</td>
<td>-</td>
<td>21</td>
<td>-</td>
<td>+</td>
<td>-</td>
<td></td>
<td>0</td>
</tr>
<tr>
<td>8</td>
<td>1y</td>
<td>-</td>
<td>16</td>
<td>Perivasculitis</td>
<td>+</td>
<td>+</td>
<td></td>
<td>2</td>
</tr>
<tr>
<td>9</td>
<td>4y1m</td>
<td>-</td>
<td>20</td>
<td>MEMR</td>
<td>+</td>
<td>-</td>
<td></td>
<td>3</td>
</tr>
<tr>
<td>10</td>
<td>1y10m</td>
<td>+</td>
<td>28</td>
<td>Meningitis</td>
<td>+</td>
<td>+</td>
<td></td>
<td>2</td>
</tr>
<tr>
<td>11</td>
<td>5y2m</td>
<td>+</td>
<td>30</td>
<td>Meningoencephalitis</td>
<td>+</td>
<td>+</td>
<td>1</td>
<td></td>
</tr>
<tr>
<td>12</td>
<td>9m</td>
<td>-</td>
<td>20</td>
<td>-</td>
<td>N</td>
<td>N</td>
<td></td>
<td>0</td>
</tr>
<tr>
<td>13</td>
<td>6m</td>
<td>-</td>
<td>16</td>
<td>-</td>
<td>N</td>
<td>N</td>
<td></td>
<td>0</td>
</tr>
<tr>
<td>14</td>
<td>1y</td>
<td>+</td>
<td>23</td>
<td>Meningoencephalitis</td>
<td>N</td>
<td>N</td>
<td>2</td>
<td></td>
</tr>
<tr>
<td>15</td>
<td>9m</td>
<td>-</td>
<td>16</td>
<td>Perivasculitis</td>
<td>N</td>
<td>N</td>
<td></td>
<td>0</td>
</tr>
<tr>
<td>16</td>
<td>10m</td>
<td>+</td>
<td>35</td>
<td>Meningoencephalitis</td>
<td>N</td>
<td>N</td>
<td>3</td>
<td></td>
</tr>
<tr>
<td>17</td>
<td>9m</td>
<td>-</td>
<td>23</td>
<td>Perivasculitis</td>
<td>N</td>
<td>N</td>
<td></td>
<td>0</td>
</tr>
<tr>
<td>18</td>
<td>22d</td>
<td>-</td>
<td>10</td>
<td>-</td>
<td>N</td>
<td>N</td>
<td></td>
<td>0</td>
</tr>
<tr>
<td>19</td>
<td>18y</td>
<td>+</td>
<td>48</td>
<td>Desmielinization</td>
<td>N</td>
<td>N</td>
<td>2</td>
<td></td>
</tr>
<tr>
<td>20</td>
<td>14y6m</td>
<td>+</td>
<td>25</td>
<td>Desmielinization</td>
<td>N</td>
<td>N</td>
<td>1</td>
<td></td>
</tr>
<tr>
<td>21</td>
<td>1y8M</td>
<td>+</td>
<td>40</td>
<td>Desmielinization</td>
<td>N</td>
<td>N</td>
<td>0</td>
<td></td>
</tr>
<tr>
<td>22</td>
<td>2y11m</td>
<td>-</td>
<td>12</td>
<td>Desmielinization</td>
<td>N</td>
<td>N</td>
<td>1</td>
<td></td>
</tr>
</tbody>
</table>

NN = Nº Neurological signs;
CNS = Central Nervous System;
IgM+C = IgM producers cells;
0 to 3 = quantification of cells T;
VIRUS-EM = virus - electron microscopy;
IMMUNOH = Immunohistochemistry;
MEMR = meningocoepliovascularitis;
0 to 4 = quantification of IgM producers cells
L = lung;
T.C = T cells;
N = not done;
multinucleated giant cells in 20 patients. These findings were used as criteria for histopathological diagnosis of measles.

Gross examination of the brain showed edema in 9 out of 23 patients and subarachnoid hemorrhage in one case.

On histopathological examination, the cases were divided into 3 groups:

GO - no changes: 7 cases
GI - inflammatory changes only: 12 cases
G2 - degenerative and inflammatory changes: 4 cases

GI - 12 patients showed meningeal and/or intraparenchymal perivascular infiltration by macrophages, lymphocytes and plasma cells. The perivasculitis was detected in the white matter of the centrum semiovale it was mild and scattered in the brain tissue (Fig. 1). They did not appear in all levels and mostly were one layer cell thick but more evident infiltrate was also found. Only in the leptomeningeal inflammatory cells were detected in 3 cases. These changes were found in different brain regions as well as in spinal cord.

G2 - Degenerative changes were found together with the inflammatory infiltrate in 4 cases. Degenerative changes of the myelin, mostly surrounding small veins of the white matter (Fig. 2), were present in brain and medulla as well as demyelination in the oval center. In these cases perivasculitis was more intense, frequent and diffuse fibrillary astroglisis was present mainly in the white matter. Many plasma cells were identified in the inflammatory infiltrate. In one case casual repaired demyelinated areas were detected.

![Fig. 1 - Group 1: Brain tissue with perivascular mononuclear cells infiltrate. HE. O.M. x 400.](image1)

![Fig. 2 - Group 2: CNS - Degeneratives and inflammatory alterations. Weil stain. O.M. x200.](image2)

The electron microscopy was carried out in 12 cases and viral particles were detected in 100% of the cases in the lungs and in 50% of these cases in CNS. They were mostly intranuclear, and occupied almost all nuclei, with concentration of the nuclear chromatin in the nuclear membrane area. In some cells the nucleocapsids occupied only part of the nuclei (Fig. 3). The intranuclear granulomatous material described an viral particles is similar with those found in the cells of the lung with interstitial pneumonitis due to measles. Previous report on the ultrastructure of measles virus showed similar aspect. We considered it as morphological demonstration of the virus. The viral particles were detected in astrocytes in the nuclei (Fig. 4) or in the nuclei and cytoplasm of cells such as

![Fig. 3 - Intranuclear nucleocapsid filling only part of the nucleus. EM. x28,500.](image3)
microglia (Fig. 5). The Fig. 6 shows aspect of viral particles. No virus was detected in nervous. Immunopathological detection was tried but the polyclonal antibodies produced in our laboratory from vaccine virus was not suitable for test in tissue. We are typing to get monoclonal antibodies for the next step of this work. The appearance of the nucleocapsids found in brain tissue was similar to those found in giant cells of the lung in cases with interstitial pneumonitis due to measles.

There was correlation between immunological signs and lesion intensity but even cases with no clinical signs showed mild lesions. Myelin degenerative changes found in G2 appeared latter than the inflammatory infiltrate. The immunohistochemistry of the infiltrate showed predominance of T cells and IgM producing plasma cells. Close correlation (p=0.043) was detected between age and time of disease which could be related to maturity of the immune system. Correlation between syncytial giant cells in lung and lymphoid organs and neuropathological lesions was also detected.

DISCUSSION

In acute measles, electroencephalographic and cerebrospinal fluid changes have been reported. Neuropathological lesions have also been detected in post-mortem examination of patients who died with clinical diagnosis of measles. However, no viral particles were found, and authors have proposed that these lesions would be due to an autoimmune reaction...
based on similarities of the inflammatory infiltrate to that of experimental allergic encephalitis 5, 11, 18, 19, 21, 22.

The detection of viral nucleocapsids in the CNS in 50% of the cases with or without clinical manifestations suggests that the virus itself was related to the neuropathological changes. When only intranuclear viral inclusions were found, it was thought to be a way of viral persistence 10, 37 which would be related to later clinical manifestations. In these cases the viral antigens would not be expressed on the cell surface, no antibodies would be produced and the host cell would not be destroyed by the immune response. The supposedly defective virus would persist in the CNS and this could explain late neurological involvement. Viral persistence in CNS would be facilitated by the heterogeneous cellular population where the virus is sequestered and kept away from the immunological defenses of the host for a long time 1, 7, 13, 12, 31.

We found one case where encephalitis was present and viirions were not detected and another where viirions were detected but there was no encephalitis. It could mean that the disease has two poles, one where the inflammatory reaction is effective to destroy the virus and another where the virus does not stimulate effective inflammatory reaction leading to a persistence of the virus within the host cells for long time explaining later appearance of lesions.

The measles virus usually reaches the CNS in the acute phase with few clinical manifestations but with persistence and replication leading to production of defective viirions responsible for slow inflammatory reaction producing chronic neurological disease like immunosuppressive delayed encephalitis or subacute sclerosing panencephalitis and perhaps related with multiple sclerosis in some cases.

The incidence of measles decreased in the last years due to vaccination. The vaccine made of attenuated virus leads to viiremia which also could develop an immunological response that could represent the beginning of the late neurological lesions found in measles. It means that the virus either wild or vaccine, reaching the CNS will find host cells in which they could persist for long time and develop late lesions related to measles. It is important to have in mind that there is also the possibility of vaccine virus, during the viiremia, starting immunological response similar to the wild virus.

Further studies are being developed to better understand the immunopathology of acute measles encephalitis. Immunopathological identification of the virus using monoclonal antibodies, "in situ" hybridization and PCR will be carried out shortly.

The ultrastructural aspect of the viral nucleocapsids is similar to that found in giant cells of the interstitial pneumonitis usually present in measles with lung involvement.

RESUMO

Deteção de partículas virais no SNC no sarampo agudo: aspectos histopatológicos, ultraestruturais e patogenéticos.

Foram realizados estudos histopatológicos e ultraestruturais de 23 pacientes que morreram com diagnóstico clínico de sarampo. Presença de nucleocapsides virais foi pesquisada em 12 casos e detectada em 50% destes casos no SNC. Eram, na maioria dos casos, intranucleares. As alterações histopatológicas associadas a manifestações neurológicas e à detecção do vírus são discutidas em relação às manifestações clínicas agudas e tardias.

ACKNOWLEDGEMENTS

We are grateful to Helio Correa, Shizie Fukasawa and Carla Pagliari for technical assistance, Maria Daisi de Morais for secretarial help and Marcio Carlos Baptista for the photography work. We thank Dr. H.F. Andrade Jr. for statistical analysis.

REFERENCES

Received for publication on 17/12/1993.
Accepted for publication on 22/2/1995.