EPIDEMIOLOGICAL SURVEY ON CANINE POPULATION WITH THE USE OF IMMUNOLEISH SKIN TEST IN ENDEMIC AREAS OF HUMAN AMERICAN CUTANEOUS LEISHMANIASIS IN THE STATE OF RIO DE JANEIRO, BRAZIL

Elizabeth Gloria O. BARBOSA SANTOS(1), Mauro Célio A. MARZOCHI (1), Nilton Francisco CONCEIÇÃO (1), Célia Maria M. BRITO (1) & Raquel S. PACHECO (1,2)

SUMMARY

A survey for canine tegumentary leishmaniasis (CTL) has been carried out between 1986 and 1993 in seven endemic localities for American cutaneous leishmaniasis in the State of Rio de Janeiro. 270 dogs have been examined for their clinical aspects, the development of delayed hypersensitivity (DHS) with Immunoleish antigen and with immunofluorescent antibody research of IgG (IF). 28.2% of them had ulcer lesions and 3.3% had scars. The lesions consisted of single (39.5%) and mucocutaneous lesions (31.6%), multiple cutaneous (25.0%) and mucocutaneous lesions associated with cutaneous ulcers (4.0%). Twelve (15.8%) isolates from biopsies were analyzed by zimodeme and schizodeme and identified as L. (V.) braziliensis. The overall prevalence of canine infection that was evaluated with the skin test was of 40.5% and with IF it was of 25.5%. Both tests showed a high positive rate with relation to the animals with mucosal lesions, as in the case of human mucocutaneous leishmaniasis. The comparison of the two tests showed the skin test to have a better performance although there was no statistical difference (p>0.05) between them. The proportional sensitivity and specificity was of 84.0% and 74.0%, respectively. The Immunoleish skin test and IF are useful tools to be employed in CTL field epidemiological surveys.

KEYWORDS: Cutaneous leishmaniasis; Dogs; Survey; Skin test

INTRODUCTION

American cutaneous leishmaniasis (ACL) occurs between the South of the United States and the North of Argentina, thus constituting an important public health problem in Latin America (GRIMALDI et al., 1989). According to the report of the Brazilian Health Ministry (1996), ACL occurs in every State of Brazil except for the Federal District. ACL that is caused by Leishmania (Viannia) braziliensis shows distinct epidemiological profiles (MARZOCHI & MARZOCHI, 1994). In the northern region it is still a zoonosis that involves wild animals of the Amazon region. In the other regions, due to environmental and demographic changes, ACL occurs in the peripheries of the great centers and shows characteristics old colonizations that are close to secondary forests, in which domiciliary vectors and synantropic animals take part. The fact that infected dogs are frequently found in these endemic areas demonstrates the close relation between the presence of these animals and the occurrence of the human disease.

PEDROSO (1913) and BRUMP & PEDROSO (1913) were the first ones to observe the natural infection of dogs in the State of São Paulo. Over the following years dogs were considered accidental hosts (PESSOA & BARRETO, 1948).

However, after the outbreak of the 70s, a lot of authors have demonstrated the presence of infected dogs to be relatively frequent, especially in the Southeastern Region (ARAÚJO FILHO, 1978; DIAS et al., 1977; TOLEZANO et al., 1980). FALQUETO et al. (1986) have discovered a clear relation between the presence of infected dogs and the upsurge of new human cases, which suggested that the disease behaved as a zoonosis that was maintained by these animals.

PIRMEZ et al. (1988), in a clinical study that involved dogs that had been naturally and experimentally infected with L. (V.) braziliensis, have found out that these animals constitute the best model for the study of the human disease. PACHECO et al. (1986) have observed that the same L. (V.) braziliensis schizodeme was circulating in the human and canine population of ACL areas in the State of Rio de Janeiro. This fact is one more indicator that dogs take part as reservoirs in the peri-domestic epidemiologic cycle of ACL.

In the end of the 70s, cutaneous leishmaniasis outbreaks took place in the State of Rio de Janeiro, at first in the District of Ilha Grande (ARAÚJO FILHO, 1978) and Jacarepaguá (MARZOCHI...
et al., 1980) in the Municipalities of Angra dos Reis and Rio de Janeiro, respectively. In the following decade the outbreaks increased and new foci were discovered: the localities of Chatuba and Serrinha in the Municipality of Mesquita in the metropolitan area of Rio de Janeiro (OLIVEIRA NETO et al., 1988); Santa Isabel farm in São José do Vale do Rio Preto in the mountain region (MARZOCHI et al., 1991); Paraty in the Araújos island in the southern part of the State (SOUZA et al., 1991); and Braçanã do Norte District in the Municipality of Rio Bonito in the northern part of the State of Rio de Janeiro (County Secretariat of Health from Rio Bonito, personal communication).

Between 1986 and 1993 canine epidemiologic inquest were undertaken in the affected areas mentioned above. For this study, the delayed hypersensitivity skin test for veterinarian use, Immunoleish (MARZOCHI & BARBOSA SANTOS, submitted) was introduced as an auxiliary in the diagnosis of canine tegumentary leishmaniasis (CTL).

The aim of this study was to investigate the prevalence of the canine disease through cutaneous reaction and through the detection of anti-Leishmania fluore scent antibodies. Furthermore, it contains a comparison between both reactions as screening for CTL diagnosis.

MATERIAL AND METHODS

The studied areas

The following seven localities in the State of Rio de Janeiro have been studied between the years of 1986 and 1993: the localities of Sacarrá and Pacuí (located on the Atlantic slope of Pedra Branca mountain chain) in District of Jacarepaguá in the Municipality of Rio de Janeiro; the areas of Serrinha and Chatuba, both of them situated on the Atlantic face of the Gericinó massif in the Municipality of Mesquita; Paraty, which lies in the Araújo island on the southern coast of the State; Santa Isabel farm in the Municipality of São José do Vale do Rio Preto the mountain region; and the District of Braçanã do Norte in the Municipality of Rio Bonito. (Table 1). The areas that were studied had rural characteristics, although they were close to urban centers. Part of the population cultivated bananas, vegetables, and raised pigs and chicken for subsistence.

In these localities, there was a high frequency of Lu. intermedia and Lu. migonei sandflies (RANGEL et al., 1984; RANGEL et al., 1990; SOUZA et al., 1991). The insects were captured with human baits on the inside walls and with light traps in chicken coops, pigsties and near the dog’s shelter.

The animals

A total of 270 dogs were examined. Most of them were adult mongrel dogs that lived together with human ACL cases that had been treated or that were under treatment. 160 (59.3%) of the dogs were male and 110 (40.7%) female; 76 (28.2%) of them showed single or multiple skin or mucocutaneous lesions and 90 (3.3%) showed scars that suggested a prior Leishmania infection (Table 1).

Every dog had a clinical-epidemiological record which contained the following data: locality/city, address, owner’s name, dog’s name, sex, race, age, clinical observations, skin test, venous blood samples and biopsies of suspected lesions. The studies of the animals were made under verbal agreement with their owners.

Leishmania sp. research

During the epidemiological survey 36 samples of Leishmania sp. were isolated by biopsies of suspicious lesions. The fragments were harvested and kept over night at 4°C in a bottle with a solution of saline, streptomycin 100 µg and penicillin 1000 I.U. On the next day the fragments were transferred to an NNN medium that contained an a layer of liquid brain heart infusion and were incubated at 26°C. Two weeks later, each isolate was transferred to a Schneider’s Drosophil medium that was supplemented with 20% heat- inactivated fetal calf serum at 26°C. Twelve (15.8%) stocks were characterized by isoenzyme analysis (MOMEN et al., 1985) and by restriction fragment lenght polymorphisms of kDNA analysis (PACHECO et al., 1986).

Laboratory Assays

The delayed hypersensitivity (DHS) cutaneous reaction with the use of the immunobiological Immunoleish was undertaken as it has been described by MARZOCHI & BARBOSA SANTOS (1988). The suspension that consisted of membrane fractions of L. braziliensis promastigotes was administered intradermically in a volume of 0.1 ml of the suspension that contained 200 mg of total protein in a milk solution 1:10000 on the inside of one of the back limbs. The reading was undertaken after 48 hours and a cellular red cutaneous reaction of ≥ 5.0 mm was considered positive.

In the indirect immunofluorescence reaction (IF) for the detection of anti-Leishmania antibodies total blood of the femur vein of each animal was employed. IF was undertaken according to COUTINHO et al. (1985). Promastigotes of a Brazilian sample that was phenotypically similar to L.major (MHOM/BR/76/JOF) were used as antigen (MOMEN et al., 1985). The sample was obtained in a 5-day culture in a bifasic NNN medium that was enriched with BHI (Brain Heart Infusion) and supplemented with 10% inactivated fetal calf serum.

The samples of serum were diluted twofold in PBS saline (pH 7.2) after 1:40. The titters above 1:40 were considered positive for leishmaniasis. The immunofluorescent conjugate was offered by Biomanguinhos (FIROCruz). The conjugate was used in a 1:150 dilution. In each slide, positive and negative controls were tested.

Statistical analysis

Single variables were analyzed with the use of the chi-squared test (χ²) (FLEISS, 1973). In the paired comparison of the immunologic methods, the Kappa (κ) agreement test (FLEISS, 1973) was employed. Sensitivity and specificity were calculated as follows: P (T₂ +/ T₁ +) and P (T₂ -/ T₁ -), respectively (FLEISS, 1973).
The chi-squared test was used in order to make the comparison between the frequency of the DHS and IF variables and the presence of dogs that had cutaneous lesions. In order to establish the type of association between positive or negative one it was calculated the Coefficient of Yule (BERQUÓ, 1981).

RESULTS

Clinical and epidemiological evaluation

Table 1 shows the result of the clinical/epidemiological enquiry that was undertaken among the 270 dogs of the localities of Sacarrão (56-20.7%), Pacuí (45-16.7%), Chatuba (33-12.2%), Serrinha (30-11.1%), Araújo island (16-5.9%), Santa Isabel farm (40-14.8%) and Braçanã do Norte District (50-18.6%). The clinical examination showed 76 (28.2%) of them to have cutaneous and mucocutaneous lesions and 09 (3.3%) to have ACL compatible scars. The ulcer lesions were detected among the animals: 30 (39.5%) had single lesions; 19 (25%) had multiple lesions; 24 (31.6%) had single mucocutaneous lesions and 3 (4%) had mucocutaneous lesions associated with cutaneous ones. The cutaneous ulcer lesions were found on their ears (43.8%), on their scrotum (18.4%) and on their snouts (37.8%).

The houses in which the dogs lived frequently had chicken coops, pigsties and a fruit storage. The population frequently referred to oppossums and mice in the vicinity of the domiciles (about 70% of the interviews). Santa Isabel farm was transformed into a poultry farm and its employees lived in masonry houses that were ceded by the owner; in these houses there were found dogs that took part in the inquest.

Leishmania identification

Out of 36 isolated suspicious lesions, 12 (15.8%) samples were identified as L. (V.) braziliensis through profiles of isoenzyme electrophoresis and restriction of kDNA.

Skin test and IF

The frequency of positive DHS (diameter ≥ 5.0 mm) and of Leishmania antibodies (titers ≥ 1:40) that were detected through IF among the 270 studied dogs were respectively of 105 (38.9%) and 66 (25.5%). There have been 11 (4.0%) losses due to lack of DHS and/or IF reading (Table 2). 144 (55.6%) of the dogs were negative (Table 3).

The diameter of the intradermic reactions varied between 5.0 and 18.0 mm and the titers of Leishmania antibodies varied between 1:40 and 1:320. The animals that had mucosal lesions were highly positive in both reactions: DHS ≥ 9.0 mm and IF ≥ 1:80.

On table 3 the results of the two tests as well as the co-positivity and the co-negativity of the responses to each test in relation to the other are represented in pairwise fashion. We have observed a poor level of agreement between the two tests (k = 0.32), although the rate of agreement was statistically significant (z = 9.72; p < 0.01).

<table>
<thead>
<tr>
<th>Locality</th>
<th>Number of Animals</th>
<th>Number of Lesions</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Total (%)</td>
<td>Single Ulcer (%)</td>
</tr>
<tr>
<td>Sacarrão</td>
<td>56 (20.7)</td>
<td>05</td>
</tr>
<tr>
<td>Pacuí</td>
<td>45 (16.7)</td>
<td>05</td>
</tr>
<tr>
<td>Chatuba</td>
<td>33 (12.2)</td>
<td>05</td>
</tr>
<tr>
<td>Serrinha</td>
<td>30 (11.1)</td>
<td>03</td>
</tr>
<tr>
<td>Araújo</td>
<td>16 (5.9)</td>
<td>05</td>
</tr>
<tr>
<td>S*Isabel</td>
<td>40 (14.8)</td>
<td>01</td>
</tr>
<tr>
<td>Braçanã</td>
<td>50 (18.6)</td>
<td>06</td>
</tr>
<tr>
<td>Total</td>
<td>270 (100)</td>
<td>30</td>
</tr>
</tbody>
</table>
TABLE 2

Number of infective dogs examined by IF and DHS assays in the studied locality between 1986 - 1993.

<table>
<thead>
<tr>
<th>Area</th>
<th>Total of Animals</th>
<th>IF (+) (%)</th>
<th>DHS (+) (%)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Jacarepaguá (Sacarrão/Pacuí)</td>
<td>99 (38.2)</td>
<td>28 (10.8)</td>
<td>35 (13.5)</td>
</tr>
<tr>
<td>Mesquita (Chatuba/Serrinha)</td>
<td>65 (25.1)</td>
<td>21 (8.1)</td>
<td>42 (16.2)</td>
</tr>
<tr>
<td>Paraty (Ilha do Araújo)</td>
<td>16 (6.2)</td>
<td>05 (1.9)</td>
<td>08 (3.1)</td>
</tr>
<tr>
<td>São José do Vale do Rio Preto (Santa Isabel Farm)</td>
<td>32 (12.5)</td>
<td>01 (0.4)</td>
<td>05 (1.9)</td>
</tr>
<tr>
<td>Rio Bonito (Braçãna do Norte)</td>
<td>50 (19.2)</td>
<td>10 (3.9)</td>
<td>15 (5.8)</td>
</tr>
<tr>
<td>Total</td>
<td>259 (100)</td>
<td>66 (25.5)</td>
<td>105 (40.5)</td>
</tr>
</tbody>
</table>

† 11 losses
χ² = 25.19 p < 0.001

TABLE 3

Relation between the results obtained in the DHS and IF (IgG) reactions detected during the canine epidemiological survey.

<table>
<thead>
<tr>
<th>Assays</th>
<th>IF (+) (%)</th>
<th>IF (-) (%)</th>
<th>TOTAL (%)</th>
</tr>
</thead>
<tbody>
<tr>
<td>DHS (+)</td>
<td>56 (21.6)</td>
<td>49 (18.9)</td>
<td>105 (49.5)</td>
</tr>
<tr>
<td>DHS (-)</td>
<td>10 (3.9)</td>
<td>144 (55.6)</td>
<td>154 (58.5)</td>
</tr>
<tr>
<td>Total</td>
<td>66 (25.5)</td>
<td>193 (74.5)</td>
<td>259 (100)</td>
</tr>
</tbody>
</table>

† 11 losses
Co-positivity DHS/IF = 21.6% Sensitivity =84%
Co-negativity DHS/IF = 55.6% Specificity = 74%
χ² = 9.72 k = 0.32 p < 0.001

TABLE 4

Correlation between DHS and IF reactions in the detection of canine tegumentary disease among the studied animals.

<table>
<thead>
<tr>
<th>Lesion (+)</th>
<th>Samples</th>
<th>DHS</th>
<th>IF</th>
</tr>
</thead>
<tbody>
<tr>
<td>n=59</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Lesion (+)</td>
<td>53</td>
<td>6</td>
<td>45</td>
</tr>
<tr>
<td>n=200</td>
<td>(90)</td>
<td>(10)</td>
<td>(76)</td>
</tr>
<tr>
<td>Lesion (-)</td>
<td>52</td>
<td>148</td>
<td>21</td>
</tr>
<tr>
<td>n=200</td>
<td>(25)</td>
<td>(74)</td>
<td>(11)</td>
</tr>
</tbody>
</table>

Lesion (+)/DHS (+) | Lesion (+)/IF (+)
χ² = 76
χ² = 58
Q = 92.2% Q = 90.6%
p < 0.001 p < 0.001

DISCUSSION

Over the last decades ACL has been recorded in a growing number in many localities in the Brazilian States showing a different epidemiological classic pattern with transmission in wild areas (ARAÚJO FILHO, 1978; DIAS et al., 1977; MARZONI & MARZONI, 1994; OLIVEIRA NETO et al., 1988; TOLEZANO et al., 1980). In these areas the disease is found among adults and children of both sexes and among domestic animals, like dogs (AGUIAR ET AL., 1989; COUSARTHO et al., 1985; FALQUETO et al., 1986) and horses (AGUIAR et al., 1989; VEXENAT et al., 1986; YOSHIDA et al., 1990). Furthermore, the sandfly population of the *Lu.
intermedia species is bigger in a domestic and peri-domestic environment than in forests (GOMES et al., 1982) and Lu. migonei, due to its cinophily, might take part in the transmission chain of canine leishmaniasis (AGUIAR et al., 1993).

In the 70's there was a L. (V.) bresiliensis ACL outbreak in the District of Jacarepaguá (in the city of Rio de Janeiro) and some years later in the cities of Mesquita, Paraty, São José do Vale do Rio Preto and Rio Bonito, in the State of Rio de Janeiro (MARZOCCHI et al., 1980; MARZOCCHI et al., 1991; OLIVEIRA NETO et al., 1988).

In the present study, a total of 12 isolates were identified as L. (V.) bresiliensis, which is the only species that has been isolated in the State of Rio de Janeiro (GRIMALDI et al., 1989), except for a sole human case and another canine one in which the primary cutaneous lesion was caused by L. (Leschmania) chagasi (OLIVEIRA NETO et al., 1986).

Visceral leishmaniasis has been detected in Rio de Janeiro since 1977 (SALAZAR et al., 1979). Human autochthonous cases has been diagnosed in peri-urban areas of the city located on the continental (Pedra Branca and Gerícino Massifies) and littoral slopes (Pedra Branca Massif) (MARZOCCHI et al., 1994), where is situated Jacarepaguá District. Even this it was not observed any case of canine visceral leishmaniasis in our study.

The epidemiological survey that was realized with a total of 270 dogs didn’t show a statistically significant difference between the amount of animals per locality, sex or presence of lesions (p<0.05). Ninety eight lesions were detected on hairless areas, as ears, scrotum and snout and consisted of single and mucosal ulcers (11.1% and 5.5%, respectively), multiple cutaneous lesions (8.8%) and mucosal lesions associated with cutaneous lesions (5.5%). These observations agree with those of FALQUETO et al., (1986) with respect to an endemic area in the State of Espírito Santo.

Scars that suggested Leishmania were observed on 5 and 4 dogs from Chutaba and Braçanã do Norte Districts, respectively. The canine disease seems to show seasonal changes between lesions in the winter and scars in the summer. ACL in the State of Rio de Janeiro usually presents a single cutaneous lesion. In human the proportion of oronasal mucosal lesions and reinfection is low (OLIVEIRA NETO et al., 1988). However, the parasite can persist and be reisolated from appropriately treated lesions even eight years after the treatment (SCHUBACH et al., 1997). Maybe the mitochondrial genomic pattern, with homogeneous characteristics, as found in this State (PACHECO et al., 1986), could represent a distinct biological behavior.

The prevalence of infected dogs which was detected in this study was of 25.5% for IFR and 40.5% for the Imunoleish skin test. Both reactions have shown a high rate of frequency as compared to other studies (AGUIAR et al., 1989; FALQUETO et al., 1986; MAYWALD et al., 1996; SILVEIRA et al., 1988). This result may indicate that the canine tegumentary infection, as well as kala-azar (ALENCAR, 1978), occurs more frequently than the human disease in the Brazilian endemic area.

In the present paper the screening precision for leishmaniasis canine infection of IF and of the skin test was compared. The k agreement of the two tests was statistically significant (z = 9.72; p < 0.001). The sensitivities of the methods were of 76.0% and 90.0% and the specificities were of 90% and 74%, respectively. However when both tests were used together their sensitivities and specificities were of 84.0% and 74.0% (Table 3).

Infection with L. (V.) bresiliensis elicits cellular and humoral immune responses. Delayed hypersensitivity is measured by Montenegro test, which tends to render positive results even after treatment (PESSOA & BARRETO, 1948). However, the use of Montenegro antigen in dogs was innocuous (PIRMIEZ et al., 1988). The first skin test for CTL diagnosis was prepared by MARZOCCHI and BARBOSA SANTOS (1988) and was called Immunoleish (MARZOCCHI & BARBOSA SANTOS, submitted). The performance of Immunoleish skin test shows it is a useful tool for CTL survey (SANTOS et al., 1994). TAFURI et al. (1993) compared Immunoleish and Leishvac® skin tests through a histopathological study. The analysis has shown that Immunoleish has elicited a more intense and diffuse inflammatory reaction than Leishvac®, which is consistent with the clinical test that was read among dogs that had been naturally infected by L. (V.) braziliensis. Furthermore the authors confirmed that the best time to read the Immunoleish skin test read was after 48 hours, which is the same as for the Montenegro skin test.

When comparing the IFR and the skin test as a screening test for CTL it was found out that the skin test showed higher agreement rates with relation to the dogs that had characteristic lesions (χ² = 76, 95% IC) than IF (χ² = 58, 95% IC) although a statistical difference has not been noticed (p=0.05).

The results reflect the high prevalence of tegumentary leishmaniasis infection and disease among dogs from the studied areas, which confirms the observations that these animals play an important part on peri-domicilar and domestic transmission of ACL. The use of the Immunoleish skin test and IF is a useful tool to be employed on ACL field epidemiological surveys.

RESUMO

Inquérito epidemiológico em população canina utilizando o teste cutâneo immunoleish em áreas endêmicas de leishmaniose cutânea americana no Estado do Rio de Janeiro, Brasil.

Um inquérito epidemiológico em população canina foi realizado em 7 localidades endêmicas de Leishmaniose Tegumentar Americana (LTA) entre os anos de 1986 a 1993, no Estado do Rio de Janeiro. Duzentos e setenta cães foram examinados, segundo os parâmetros: clínicos, desenvolvimento...
de hipersensibilidade tardia e dosagem de anticorpos por imunofluorescência indireta (IFI). 28,2% dos animais possuíam lesões e 3,3% eram portadores de cicatrizes compatíveis com infecção prévia de Leishmania sp. De um total de 98 lesões ulceradas detectadas, 39,5% eram cutâneas únicas, 25,0% lesões cutâneas múltiplas, 31,6% lesões de mucosa e 4,0% lesões de mucosa associadas a lesões cutâneas. Doze amostras (15,8%), colhidas de fragmentos de lesões cutâneas foram analisadas por zimodema e esquizontema e identificadas como Leishmania (V.) braziliensis. A prevalência da infecção canina avaliada pelo teste cutâneo e pela IFI foram respectivamente de 40,5% e 25,5%. A comparação entre as reações mostrou que o teste cutâneo foi superior na detecção da infecção e da doença canina, embora, sem diferença estatística significante (p > 0,05). A sensibilidade e a especificidade proporcional foram respectivamente de 84,0% e 74,0%. A utilização de ambas as reações, cutânea e sorológica, mostraram-se úteis como instrumento de diagnóstico epidemiológico em áreas de LTC.

ACKNOWLEDGEMENTS

We thank Dr. Pedro Cabello for statistical analysis and Mrs. Betina von Staa for reviewing the English manuscript.

REFERENCES

Recebido para publicação em 09/09/1997
Aceito para publicação em 16/02/1998