POTENTIAL UTILITY OF HYPERBARIC OXYGEN THERAPY AND PROPOLIS IN ENHANCING THE LEISHMANICIDAL ACTIVITY OF GLUCANTIME

Diana Copi AYRES(1), Thiago Antonio FEDELE(2), Maria Cristina MARCUCCI(2) & Selma GIORGIO(1)

SUMMARY

In this study we investigated the efficacy of hyperbaric oxygen (HBO) therapy, alone or combined with the pentavalent antimonial glucantime on Leishmania amazonensis infection. In parallel, the effect of Brazilian red propolis gel (propain) alone or combined with glucantime on L. amazonensis infection was evaluated. The inhibition of the infection in macrophages treated with glucantime in combination with HBO exposition was greater than that of macrophages treated with glucantime alone or HBO alone. The susceptible mouse strain BALB/c infected in the shaved rump with L. amazonensis treated with glucantime and exposed to HBO showed: time points in the course of the disease in which lesions were smaller than those of mice treated with glucantime alone and revascularization of the skin in the lesion site; interferon-gamma (IFN-γ) levels were not elevated in lymph node cells from these animals. Propain alone was not efficient against lesions, although less exudative lesions were observed in animals treated with propain alone or combined with glucantime. These results reveal the potential value of HBO and red propolis in combination with glucantime for treating cutaneous leishmaniasis and encourage further studies on the effect of more aggressive HBO, propolis and glucantime therapies on different mouse models of leishmaniasis.

KEYWORDS: Leishmania amazonensis; Pentavalent Antimonial; Hyperbaric Oxygen; Propolis; Macrophage; Mouse.

INTRODUCTION

Leishmaniasis is a neglected disease caused by a protozoan of the genus Leishmania; it is currently endemic in 88 countries. The severity of the disease induced by different Leishmania species varies enormously, ranging from cutaneous or mucosal to visceral or diffuse cutaneous infection. Chemotherapy remains the mainstay for the control of leishmaniasis, as effective vaccines have yet to be developed. The pentavalent antimonial (SbV) glucantime has been the basis of leishmaniasis therapy worldwide for over 50 years, achieving remarkable clinical improvements, despite its failure to provide a parasitological cure and its side effects.

In the search for new alternative therapies we have recently reported that hyperbaric oxygen (HBO) therapy, which is the application of pressures greater than 1 ATA to an environment of 100% O2, reduced the size of L. amazonensis-induced footpad lesions in BALB/c mice, while Brazilian Northeastern red propolis tested as an extract was capable of reducing the parasite load in the in vitro L. amazonensis infection of macrophages. Various compounds have been tested, combined with glucantime, in order to improve chemotherapy, and the rationale behind combining drugs and therapies allows the reduction of treatment duration, resulting in fewer side effects and fewer delays in the development of resistance. This report describes the effect of the combined therapy of HBO and glucantime against intracellular amastigotes in vitro and against infection in mouse model BALB/c. The activity of Brazilian red propolis gel and glucantime against infection in the BALB/c model was also evaluated. The choice of the mouse model infected with L. amazonensis in the shaved rump was due to its development of cutaneous lesion closely correspondent to the clinical setting which allows for topical application to the skin.

MATERIALS AND METHODS

Mice: Inbred BALB/c mice, 6-8 weeks of age, were purchased for the mouse breeding facility at Universidade Estadual de Campinas, Campinas, Brazil. All animal experiments were conducted in accordance with institutional guidelines in compliance with the recommendations of the Guide for the Care and Use of Laboratory Animals.

Parasite and infection of mice: L. amazonensis (MHOM/BR/73/2269) amastigotes were isolated from skin lesions of susceptible mice as previously described. BALB/c mice were infected with 1 X 107 amastigotes suspended in 20-50 µL of sterile saline by subcutaneous injection into the shaved rump. Lesions were measured weekly in two perpendicular diameters with a dial caliper at weekly intervals.

(1) Departamento de Biologia Animal, Instituto de Biologia, Universidade Estadual de Campinas, Caixa Postal 6109, 13083-970 Campinas, São Paulo, Brasil.
(2) Programa de Pós-Graduação em Farmácia da Universidade Bandeirante de São Paulo, São Paulo, Brasil.
Correspondence to: Selma Giorgio, Fax: 55 19 35216282. Phone: 55 19 35216287. E-mail: sgiorgio@unicamp.br
RESULTS

We first addressed the question of whether HBO leishmanicidal activity in an amastigote-macrophage model for *L. amazonensis* is potentiated in combination with glucantime. As shown in Figure 1 and recently for our group's macrophage cultures exposed to HBO exhibit a significant reduction in the percentage of infected cells and the number of amastigotes per cell as opposed to macrophage cultures not exposed to HBO. The effect of glucantime on infected cells was similar to HBO (Fig. 1). The inhibition of the number of amastigotes per macrophage reached 66% in cells treated with glucantime in combination with exposure to HBO (2.1 ± 0.32 vs. 5.9 ± 0.9), which is slightly greater than that of either glucantime or HBO alone (3.9 ± 0.7 and 4.2 ± 0.6) (Fig. 1).

![Figure 1](image_url)

Fig. 1 - Effect of HBO and glucantime on macrophages infected with *L. amazonensis*. The mouse peritoneal macrophages were infected with amastigotes and cultured for 24 h (Control), treated with glucantime (6 µg SbIII/mL) for 24 h (Gluca), exposed to HBO (2.5 ATA, 100% O2) for 2 h and then cultured for 22 h (HBO) or exposed to HBO for 2 h and then treated with glucantime (6 µg SbIII/mL) for 22 h (Gluca+HBO). A. Percentage of infected macrophages. B. Number of intracellular amastigotes per macrophage. The results represent the mean ± SD of three experiments. * represents statistical differences (p < 0.01) between Control, Gluca and HBO. ** represents statistical differences (p < 0.01) between Gluca, HBO and Gluca+HBO.

The increase of glucantime’s leishmanicidal efficacy by combining glucantime with exposure to HBO was measured in experiments using the BALB/c model infected with *L. amazonensis* in the shaved rump. One hundred percent of mice had ulcerations after six weeks of infection and their lesions failed to heal. These lesions were elevated and expanded with central ulceration over the next 14 weeks. The treatments started...
six weeks after infection when skin lesion ulcerated and continued for 20 days. As shown in Figure 2, lesions progressively increased in size in untreated mice. Interestingly, HBO treatment, although relatively effective in the BALB/c model infected with *L. amazonensis* in the footpad (data not shown), was not active in this mouse model infected in the shaved rump (Fig. 2). In comparison, in mice treated with glucantime the lesions did not enlarge during the period of therapy; in fact, they were smaller after the end of therapy and ulceration developed slowly (Fig. 2). In the case of animals treated with both glucantime and exposure to HBO, lesions also did not enlarge during the period of therapy. Although lesion size did not differ over time among animals both treated with glucantime and exposed to HBO and animals treated with glucantime alone, there are points in the course of the disease in which significant differences between lesion size and external appearance were observed (nine to 12 weeks after infection; Figs. 2 and 4).

![Fig. 2 - Effect of HBO and glucantime on lesion development in BALB/c mice infected with *L. amazonensis*. Animals were inoculated in the shaved rump with 1X10^5 amastigotes. After six weeks of infection, mice were treated intraperitoneally with saline (■), glucantime (27 mg/Sb/ kg/day) (●), exposed to HBO (2.5 ATA, 100% O_2, 1h/day) (▲) or exposed to HBO and treated with glucantime (27 mg/Sb/ kg/day) (▲) for 20 days. Representative data from one of three experiments are shown. * represent statistical differences (p < 0.05) between glucantime and glucantime + HBO, ** represent statistical differences (p < 0.05) between glucantime and glucantime + HBO. Arrows indicate the beginning and end of the treatments.

We also investigated whether the efficacy of glucantime treatment is potentiated by gel containing red propolis (propain). After lesions were established (six weeks) animals were treated for 20 days with glucantime alone or treated with both glucantime and exposure to HBO. After six weeks of infection, mice were treated topically with propain (■), gel without propolis (▲), intraperitoneally with glucantime (27 mg/Sb/ kg/day) (●) or glucantime (27 mg/Sb/ kg/day) + propain (▲), for 20 days. The results represent the mean ± SD of three experiments. * represent statistical differences (p < 0.05) between propain, gel without propolis + glucantime and glucantime + glucantime + propain. Arrows indicate the beginning and end of the treatments.

Histopathological analyses revealed that in the lesions of untreated mice there was no epithelial tissue in the center of the ulcer and the cellular infiltrate consisted predominantly of parasitized and vaculated macrophages (Fig. 4A and 4B). In contrast, lesions from mice treated with glucantime presented tissue reorganization involving the restructuring of epithelial tissue. There were very few infected macrophages and fewer infiltrating cells than in lesions of untreated mice (Fig. 4C and 4D). After exposure of the lesions to HBO, the histological pattern was similar to that described for lesions of untreated mice (Fig. 4E and 4F), although a process of revascularization of skin took place in the lesion site (Fig. 4F). The lesions of animals both treated with glucantime and exposed to HBO presented a pattern similar to that of lesions of mice treated with glucantime alone and a process of revascularization of skin (Fig. 4L and 4M). The lesions of animals treated with glucantime and epicutaneous application of propain presented tissue reorganization, intact pilous follicles and skin glands, and few infected macrophages; a pattern similar to that of lesions in mice treated with glucantime alone (Fig. 4G and 4H). The lesions of animals treated with the epicutaneous application of propain alone presented a pattern similar to that of lesions in untreated mice (Fig. 4I and 4J).

To analyze whether the therapies tested induce immune responses, we measured the levels of IFN-γ and IL-4 production by ConA-stimulated lymph node cells. It was observed that infected untreated mice produced higher levels of IFN-γ compared to mice treated with glucantime alone or treated with both glucantime and exposure to HBO (8,200 ± 250 vs. 1,059 ± 145 vs. 100 ± 31; Fig. 5). It was observed that mice treated with both glucantime and propain produced higher levels of IFN-γ than mice treated with glucantime alone (3,090 ± 122 vs. 1,059 ± 145; Fig. 5). No detectable levels of IL-4 were found in cell cultures of mice untreated or treated with glucantime, propain or exposed to HBO (data not shown).
DISCUSSION

The combination of chemotherapy for treatment of leishmaniasis and other infectious diseases has been addressed in latter years. Recently, we showed that HBO is toxic for L. amazonensis promastigotes and can reduce macrophage susceptibility to infection and the size of footpad lesion in BALB/c mice. In the present study, the inhibition of the infection in macrophages treated with glucantime in combination with HBO was greater than that of macrophages treated with glucantime alone and HBO alone. The exact mechanism by which glucantime combined with HBO was more effective in the in vitro macrophage model is not known. Based on our previous reports and literature data,2,3 we suggest that free radicals and other reactive oxygen-based molecules produced by macrophages and parasites under HBO cannot be adequately detoxified by parasites treated simultaneously with glucantime. Antimonials inhibit trypanothione reductase enzymatic system, which protect against oxidative damage.

The in vivo model studies showed that there are points in the course of the disease in BALB/c mice treated with both glucantime and exposure to HBO in which lesions are smaller than those treated with glucantime alone and HBO alone. However, the exact mechanism by which glucantime combined with HBO was more effective in the in vitro macrophage model is not known. Based on our previous reports and literature data, we suggest that free radicals and other reactive oxygen-based molecules produced by macrophages and parasites under HBO cannot be adequately detoxified by parasites treated simultaneously with glucantime. Antimonials inhibit trypanothione reductase enzymatic system, which protect against oxidative damage.

The other objective of this study was to evaluate the activity of red propolis combined with glucantime treatment. Once we had already...
shown the anti-parasite effect of ethanolic extracts of red propolis in promastigotes and in *L. amazonensis* infected macrophages, we tested red propolis gel (propain) on mouse model BALB/c. The treatment with both propain and glucantime was similar to the treatment with glucantime alone, i.e. lesion growth is prevented for two weeks after treatment and smaller lesions than those in untreated mice are present until the end of the experiment. However, less exudative lesions were observed in animals treated with propain alone or combined with glucantime. Propain alone was not effective against *L. amazonensis* lesions. Various pharmacological effects have been attributed to propolis, such as antiviral, antibacterial and analgesic effects. The red propolis extract studied in this report reduced the dissemination of melanoma cells in mice. The reasons for our results are not known. BALB/c mice cutaneously infected with *L. amazonensis* represent a model of extreme susceptibility and a string test for chemotherapy displaying rapid development of skin lesions followed by ulceration and cutaneous metastases resembling human cutaneous diffuse leishmaniasis. No cure was obtained with glucantime.

In conclusion, the results presented in this report reveal the potential value of HBO and red propolis in combination with glucantime for treating cutaneous leishmaniasis and encourage further studies on the effects of more-aggressive HBO, propolis and glucantime therapies in different mouse models of leishmaniasis.

RESUMO

A utilidade da terapia de oxigenação hiperbárica e própolis em potencializar a atividade leishmanicida do glucantime

Nesse trabalho foi avaliada a eficácia da terapia da oxigenação hiperbárica (HBO), aplicada em combinação ou não com o tratamento com glucantime, durante a infecção com *Leishmania amazonensis*. O efeito de gel da própolis vermelha de origem brasileira (propain) aplicado em combinação ou não com o tratamento com glucantime, também foi avaliado durante infecção com esse parasita. A inibição da infecção de macrófagos tratados com glucantime em combinação com HBO foi maior que a de macrófagos tratados apenas com glucantime ou HBO. A linhagem murina susceptível, BALB/c, infectada no dorso com *L. amazonensis*, tratada com glucantime e exposta a HBO, mostrou durante o curso da doença, fases em que as lesões eram menores do que a de camundongos apenas tratados com glucantime; observou-se revascularização da pele da lesão e baixa produção de interferon-γ em células de linfonodos desses animais. O tratamento com propain não foi eficiente na cura das lesões, apesar de lesões menos exsudativas serem observadas em animais tratados com propain ou propain combinada ao tratamento com glucantime. Os resultados demonstram que tanto HBO como a própolis vermelha em combinação com glucantime, são promissoras no tratamento da leishmaniose cutânea. Novos estudos devem ser realizados para avaliar tratamentos e outros protocolos em diferentes modelos murinos da leishmaniose.

AUTHOR CONTRIBUTIONS

D.C. Ayres and T.A. Fedele carried out the experiments, M.C. Marucci carried out the experiments and the analyses of results and SG conceived of the study and wrote the manuscript.

REFERENCES

Received: 14 August 2011
Accepted: 28 September 2011