Abstract
Species of *Rhynchospora* sect. Tenues are morphologically very similar. *Rhynchospora tenuis* complex is the most problematic species complex in this group and it concentrates entities of difficult delimitation, as is the case of *R. tenuis*, *R. tenuis* subsp. *austr-brasiliensis* and *R. enmanuelis*. Samples of these three taxonomic entities, besides *R. junciformis* and *R. breviuscula* (*Dichromena*), were analyzed in a comparative way using morphologic, cytogenetic and molecular tools. Despite of high morphological similarity between these taxa, *R. tenuis* was separated from *R. tenuis* subsp. *austr-brasiliensis* and *R. enmanuelis* according to chromosome numbers (2n = 4 and 2n = 18) and ISSR markers. The combined analysis of shape and size of achenes and stylopodium, number of spikelets, cytogenetic features and molecular markers suggest a clear proximity among *Rhynchospora junciformis*, *R. tenuis* subsp. *austr-brasiliensis* and *R. enmanuelis*, in relation to *R. tenuis*. These data indicate the need for a new taxonomic review of *R. sect. Tenues*, mainly to solve the status and nomenclatural situation of *R. tenuis* subsp. *austr-brasiliensis* and *R. enmanuelis.*

Key words: cytotaxonomy, dysploidy, ISSR, holocentric chromosomes, Poales.

Introduction
Rhynchospora sect. Tenues Kükenthal (Cyperaceae) is characterized by the presence of small plants with channeled to filiform leaves and achenes with transverse wrinkles and stylopodium not included in a depression of the apex of the achene (Rocha & Luceño 2002). This section includes ca. 20 species, fourteen of these occurring in Brazil (Alves et al. 2009). Seventeen species were described by Kükenthal (1951), besides another three were described by Rocha & Luceño (2002). The number of taxa in this section is however doubtful due to the *Rhynchospora tenuis* complex, which may involve *Rhynchospora tenuis*...
The literature points out problems in *Rhynchospora* species circumscription with some taxonomic conflicts, mainly on species close to *R. tenuis*, which presents also considerable karyotype variability. In this study we have chosen samples from three taxonomic conflicting taxa: *R. tenuis, R. tenuis* subsp. *austro-brasiliensis* and *R. emmanuels*, which are very common in the southeast and southern Brazil. Besides two other species (*Rhynchospora* junciformis (Kunth) Böckeler of R. sect. *Tenes* and *Rhynchospora* breviuscula H. Pfeiff of *Rhynchospora* sect. *Dichromena* (Michaux) Grisebach) have been chosen for comparison using morphologic, cytogenetic and molecular analyses. The discussion considers the value of these different diagnostic characters in order to help future taxonomic revisions.

Material and Methods

Five individuals of each taxa, *Rhynchospora tenuis* (three populations), *R. tenuis* subsp. *austro-brasiliensis* (five populations), *R. enmannelis* (two populations), *R. junciformis* (one population) and *R. breviuscula* (one population) were collected in three Brazilian states: Paraná, São Paulo, and Mato Grosso do Sul (Tab. 1). The samples of *R. enmannelis* were obtained from Tupã, in the same locality where the type specimen was collected (Rocha & Luceño 2002), and in São Paulo, in the same locality in which Vanzela et al. (2000) reported chromosome number. All samples were maintained in a greenhouse at the Laboratório de Biodiversidade e Restauração de Ecossistemas (LABRE) in the Universidade Estadual de Londrina, Londrina, Paraná, Brazil.

Morphological analysis

Morphologic analysis was performed in five individuals of each species collected. In this evaluation were considered: i) size of plants, leaves and inflorescences, ii) size and shape of spikelets, achenes and stylopodium, iii) number of spikelets, anthers and axillary corymbs and iv) color of achenes. The measurements were made using graph paper, ruler, magnifying glass and stereomicroscope. The vouchers are kept in the FLOR herbarium.
Morphological features	R. tenuis	R. tenuis subsp. austro-brasiliensis	R. enmanu	R. junciformis	R. breviuscula (Dichromena)
Plant size | 17 – 38 cm | 16 – 40 cm | 26 – 36,5 cm | 24 – 41 cm | -
Leave width | 0.60 - 1.45 m | 0.60 - 1.50 mm | 0.6 - 1.10 mm | 1.0 - 1.50 mm | -
Growth habit | caespitose | caespitose | caespitose | caespitose | -
Inflorescence length | 9.00 – 12.00 cm | 7.50 – 14.50 cm | 8.50 – 12.80 cm | 9.00 – 14.00 | -
Inflorescence width | 3.25 – 4.55 cm | 2.75 – 6.00 cm | 3.50 – 4.20 cm | 2.80 – 5.60 | -
Number of corymbs | 2 | 2 – 3 | 2 | 2 | -
Spikelet length | 3.30 – 4.10 mm | 3.30 – 4.25 mm | 3.40 – 4.10 mm | 3.40 – 4.25 mm | -
Spikelet width | 0.85 – 1.10 mm | 0.70 – 1.00 mm | 0.65 – 1.00 mm | 0.83 – 1.10 mm | -
Number of spikelets | 4 a 7 | 4 a 7 | 4 a 7 | 1 a 2 | -
Number of stamens | 3 | 3 | 3 | 3 | -
Achene length | 0.69 – 0.99 mm | 1.03 – 1.14 mm | 1.00 – 1.15 mm | 1.07 – 1.20 mm | -
Achene width | 0.66 – 0.94 mm | 1.05 – 1.09 mm | 0.94 – 1.08 mm | 0.92 – 0.99 mm | -
Achene shape | round to obovate | obovate | obovate | rounded to oblate | -
Stylopodium length | 0.22 – 0.25 mm | 0.22 – 0.26 mm | 0.25 – 0.27 mm | 0.38 – 0.43 mm | -
Stylopodium width | 0.50 – 0.72 mm | 0.87 – 0.92 mm | 0.82 – 0.89 mm | 0.87 – 0.91 mm | -
Stylopodium shape | triangular to bilobed | triangular to bilobed | triangular to bilobed | triangular | -
Number of stamens | 3 | 3 | 3 | 3 | -
Achene length | 0.69 – 0.99 mm | 1.03 – 1.14 mm | 1.00 – 1.15 mm | 1.07 – 1.20 mm | -
Achene width | 0.66 – 0.94 mm | 1.05 – 1.09 mm | 0.94 – 1.08 mm | 0.92 – 0.99 mm | -
Chromosome numbers | 2n = 4 | 2n = 18 | 2n = 18 | 2n = 18 | 2n = 10
DSL\(^a\) (µm) | 20.98 | 45.66 | 46.21 | 46.37 | -
LC/SC\(^b\) (µm) | 6.75 / 3.73 | 3.16 / 1.78 | 3.22 / 1.74 | 3.47 – 1.81 | -

\(^a\)DSL = diploid set length and \(^b\)LC/SC = largest chromosome/smallest chromosome.

Table 1 – Morphologic and karyotypic features and localities of the species of the sect. Tenues and R. breviuscula.
Cytogenetic analysis

Rhyncospora tenuis, R. tenuis subsp. *austr-brasiliensis, R. enmanuelis* and *R. junciformis* were submitted to cytogenetic analyses. Somatic chromosomes were obtained from root tips, which were pretreated with 2 mM 8-hydroxyquinoline for 24 h at 10°C, fixed in absolute ethanol:glacial acetic acid (3:1, v:v) for 12 h and then kept at -20°C until used, as described by Vanzela *et al.* (2000). Root tips were digested for 4 h in a mixture of 2% (v/v) cellulase and 20% (v/v) pectinase, further hydrolyzed in 1 N HCl at 60°C for 11 min, dissected in a drop of 60% acetic acid and squashed. The coverslips were removed after freezing in liquid nitrogen. The material was stained with 2% Giemsa and permanent slides mounted in Entellan. The size of the chromosomes and the length of the diploid set were determined based on five different metaphases of each species/population.

For meiotic chromosome analysis, anthers were collected and immediately fixed in absolute ethanol:glacial acetic acid (3:1, v:v) for 12 h, and then kept at -20°C until used, as described by Vanzela *et al.* (2000). Samples were hydrolyzed in 1 N HCl at 60°C for 8 min and squashed in a drop of 45% acetic acid. The coverslips were removed after freezing, as described above, and the samples were stained with 2% Giemsa. Slides were mounted with Entellan.

For meiotic chromosome analysis, anthers were collected and immediately fixed in absolute ethanol:glacial acetic acid (3:1, v:v) for 12 h, and then kept at -20°C until used, as described by Vanzela *et al.* (2000). Samples were hydrolyzed in 1 N HCl at 60°C for 8 min and squashed in a drop of 45% acetic acid. The coverslips were removed after freezing, as described above, and the samples were stained with 2% Giemsa. Slides were mounted with Entellan.

Fluorescent in situ hybridization (FISH) was performed according to Da Silva *et al.* (2008b). Slides were prepared with root tips pretreated as described above, without acid hydrolysis. The 45S rDNA probe from *Triticum aestivum* L. (pTa71; Gerlach & Bedbrook 1979) was labeled with biotin-14-dATP by nick translation and 100 ng of probe (4 μL) were mixed in a solution containing 100% formamide (15 μL), 50% polyethylene glycol (6 μL), 20 × SSC (3 μL), 100 ng of calf thymus DNA (1 μL), and 10% SDS (1 μL). The samples were denatured at 90°C for 10 min and hybridization was performed at 37°C overnight in a humidified chamber. Post-hybridization washes were carried out in 2 × SSC with 70% stringency. The probe was detected with avidin-FITC conjugate at 37 °C for 1 h and the post-detection washes were performed in 4 × SSC/0.2% Tween 20, all at room temperature. Slides were mounted with 25 μL of DABCO solution, composed of glycerol (90%), 1,4-diaza-bicyclo(2,2,2)-octane (2.3%), 20 mM Tris-HCl, pH 8.0 (2%), 2.5 mM MgCl2 (4%) and distilled water (1.7%), with 4 μL of 2 μg/mL DAPI.

All the chromosome images were acquired in grayscale with a Leica DM4500 B microscope coupled with a DFC 300FX camera. The FISH images were overlapped with red color for DAPI and greenish-yellow (45S rDNA) for FITC, using the Leica IM50 4.0 software. The images were optimized for best contrast and brightness with Adobe Photoshop CS3 version 10.0 software.

Genomic DNA extraction and ISSR-PCR

Genomic DNA of each species, including the *R. breviscula* as outgroup, was isolated from young leaves using a CTAB extraction buffer (2% cetyltrimethyl ammonium bromide, 1.4 M NaCl, 20 mM EDTA, 100 mM Tris-HCl, pH 8.0, 1% polyvinylpyrrolidone, and 0.2% β-mercaptoethanol) at 60°C for 1 h, and subsequently treated with 0.01% proteinase K at 60°C for 30 min, as described by Doyle and Doyle (1990), with modifications. Samples were purified with phenol/chloroform (1:1; v/v) and chloroform/isoamyl alcohol (24:1; v/v) and treated with 100 μg/mL RNase. DNA concentration was estimated using a DyNA Quant 200 (Hoefer, Inc., USA).

For ISSR-PCR (inter simple sequence repeat polymerase chain reaction) (Zietkiewicz *et al.* 1994), the following oligomers were used as primers: TGG⁻GAG⁻C⁺C⁻, AAG⁻GTA⁻C⁺C⁻, GTG⁻GAC⁻A⁺C⁻, CAG⁻GAG⁻A⁺C⁻, and TGA⁻G⁺C⁻. PCR was performed in a final volume of 25 μL, containing 2.5 μL of 10× enzyme buffer, 2.0 μL of 50 mM MgCl2, 2.0 μL of 10 mM dNTP, 1.0 μL of 5 μM primer (each), 0.2 μL of *Taq* DNA polymerase (1 U), 2.0 μL of template DNA (10 ng/μL) and 15.3 μL of ultrapure H2O. Samples were amplified using a PTC 100 MJ Research thermal cycler, programmed for 3 min at 94°C, followed by 36 cycles of 1 min at 94°C, 30 sec at 45°C and 1 min at 72°C, with a final extension at 72°C for 5 min. To test the consistency and reproducibility of reactions, products from three different PCR reactions were submitted to electrophoresis in 1.4% Ultrapure agarose (Invitrogen™, USA) at 3 V/cm and stained with 3 μL of 10 g/mL ethidium bromide and compared. Only consistent results were used for the analysis. For analysis of ISSR polymorphisms, 5 μL of each PCR product of each sample were submitted to 9% polyacrylamide gel electrophoresis (Invitrogen™, USA) at 8 V/cm, and the bands revealed with 10% silver nitrate.

The ISSR bands were analyzed as binary characters (0 and 1) with the TREECON software - Version 1.3b. Genetic similarity data matrices were
Results

The average values of the morphometric measurements of at least five fertile individuals of each taxonomic entity and population are shown in Table 1. The results showed overlap of values in most morphologic traits among all taxonomic entities. The achenes of *R. tenuis* varied significantly in size, reaching 50% size variation among populations (Fig. 1a-c). In addition, *R. tenuis* exhibited spherical/obovate achenes, while *R. tenuis* subsp. *austro-brasiliensis* and *R. enmanuelis* showed obovate ones (Fig. 1d-e, respectively). *Rhynchospora junciformis* showed spherical/oblate achenes, with size very similar to that of *R. tenuis* subsp. *austro-brasiliensis* and *R. enmanuelis* (Fig. 1f and Table 1).

In general, the stylodia were relatively similar in shape (triangular bilobed) in all taxonomic entities, except for *Rhynchospora junciformis*, which showed a triangular shape.

In general, the inflorescences exhibited two axillary corymbs, however, up to three were found in *R. tenuis* subsp. *austro-brasiliensis* and *R. enmanuelis*. The distance between corymbs varied in all species (Table 1). *Rhynchospora tenuis*, *R. tenuis* subsp. *austro-brasiliensis* and *R. enmanuelis* showed four to seven spikelets grouped, but *R. junciformis* showed one to two spikelets in the tip of culms. The spikelets of all species appeared curved when mature, but this feature was less pronounced in *R. tenuis*. All species exhibited three stamens, with some variations in size in different flowers (Fig. 1g-i). However, *R. tenuis* subsp. *austro-brasiliensis* and *R. enmanuelis* showed staminodes of different sizes in different flowers (Fig. 1j).

Cytogenetic analysis showed 2n = 4 for *R. tenuis* (Fig. 2a) and 2n = 18 for *R. tenuis* subsp. *austro-brasiliensis*, *R. junciformis* and *R. enmanuelis* (Fig. 2b-d, respectively), without visible karyotype variations among different populations of each species. *Rhynchospora tenuis* showed a karyotype composed of two large and two small chromosomes and a diploid set size of about 21 µm. *Rhynchospora tenuis* subsp. *austro-brasiliensis*, *R. enmanuelis*, and *R. junciformis* displayed very similar karyotypes, with chromosomes decreasing slightly in size. The diploid set size in these three species was more than twice that found in *R. tenuis* (Tab. 1). In meiosis, just the chromosomes of *R. enmanuelis* and *R. tenuis* subsp. *austro-brasiliensis* were analyzed, pairing as 7II + 1I (Fig. 2e-f) and only a very few cells were observed with nine bivalents. It is important to mention that some technical limitations hindered the analysis about meiosis. Due to extremely small size of anthers (a little over a millimeter) and the occurrence of some unviable anthers, with formation of staminodes, we did not get sporocytes with good quality enough to conduct a safe analysis of frequency to test the irregular meiotic configurations. In addition, because the holocentric chromosomes make possible karyotype changes resulting from symploidy and agmatoploidy and the occurrence of chromosome reduction in *R. tenuis* (2n = 4) and tetravalents in *R. tenuis* subsp. *austro-brasiliensis* and *R. enmanuelis*, we chose not to organize the chromosomes of these species in pairs to not incur pairing errors. The FISH with 45S rDNA probe revealed terminals signals in the two small chromosomes for *R. tenuis* (Fig. 2g). *Rhynchospora tenuis* subsp. *austro-brasiliensis*, *R. enmanuelis* (data not showed) and *R. junciformis*, showed six chromosomes with terminal hybridization signals (Figs. 2h-i), but *R. junciformis* exhibits signals in large and medium chromosomes while in the other two species the signals were in the large, medium and small chromosomes.

The eight primers used in ISSR-PCR produced fragments of 350 to 1800 bp. After the repeatability test, 116 polymorphic loci were considered and used in the genome comparison. *Rhynchospora tenuis* shared few bands with *R. tenuis* subsp. *austro-brasiliensis*, but the latter shared several bands with *R. enmanuelis* and *R. junciformis* (see an example in the Fig. 3). UPGMA grouping using the Nei & Li (1979) similarity index clearly separated *R. breviuscula* from the other species, with only 9% similarity (Fig. 4). The taxa of the *R. sect. Tenues* comprised two groups, with 39% similarity. Group A consisted of two populations of *R. tenuis*, with 77% of similarity. Group B, which comprised *R. tenuis* subsp. *austro-brasiliensis*, *R. enmanuelis* and *R. junciformis*, was divided into three subgroups, both with 60% similarity. The first subgroup, named B1, includes only one population of *R. junciformis*, and the second or B2, grouped *R. tenuis* subsp. *austro-brasiliensis*.
Figure 1 – Fruit and flower morphology of Brazilian species of Rhynchospora section Tenues – a-f. image of the achenes; a-c. achenes of Rhynchospora tenuis. Note the evident variation in the size of achenes from different samples. d. achene of R. tenuis subsp. austro-brasiliensis; e. achene of R. enmanuelis. Note the similarity between achenes of d and e-f. achene of R. junciformis. Note the wider stylopodium in relation to other species. g-i. anthers of R. enmanuelis. Note the existence of three anthers of similar size (g), two larger and one smaller (h) and little staminodes indicated by arrow (i). S = style. Scale bars = 1 mm.
Figure 2 – Chromosomes of Brazilian species of Rhynchospora section Tenues – a. mitotic chromosomes of Rhynchospora tenuis with 2n = 4; b. R. tenuis subsp. austro-brasiliensis with 2n = 18; c. R. junciformis with 2n = 18; d. R. enmanuelis with 2n = 18. e-f. meiotic chromosomes of R. tenuis subsp. austro-brasiliensis and R. enmanuelis with 7I and 1IV. Numbers indicate tetravalent configurations; g. FISH with 45S rDNA probe in mitotic chromosomes of R. tenuis; h. R. junciformis; i. R. tenuis subsp. austro-brasiliensis. Bar = 10 μm.

and R. enmanuelis with at least 68% similarity. In group C, one population of R. tenuis subsp. austro-brasiliensis (Itararé, SP) showed 85% similarity with R. enmanuelis from São Paulo, SP (Fig. 4).

Discussion

Rhynchospora tenuis, R. tenuis subsp. austro-brasiliensis and R. enmanuelis are easily confused in the field, mainly because the features used in diagnosis overlap in size and shape. Our analysis also showed overlapping of the values for all morphologic characters, including R. junciformis, except for shape of stylopodium in the last one. When our data on morphology were compared with the morphological features reported by Barros (1960), Koyama (1972), Rocha & Luceño (2002) and Strong (2006) all these species were found to share similar features. However, when our results on size and shape of achenes and stylopodium, number of terminal spikelets, karyotypic features and ISSR
The literature shows that *Rhynchospora junciformis* can be differentiated from other species of *R.* sect. *Tenues* based on the smaller number of spikelets in the tip of culms, morphology of achenes and stylopodium (Barros 1960; Rocha & Luceño 2002, Strong 2006). Samples collected in Anhanduí exhibited overlap of some morphological features, however this population was differentiated from the other taxa by number of spikelets (1–2), achene shape (rounded to oblate) and stylopodium length (0.38–0.43 mm). These samples exhibited triangular bilobed shape of stylopodium, which reach one-third of the achene length, being very similar to *R. junciformis* var. *monocarpa* Kük. described by Barros (1960). However, these were very different from the description of Rocha & Luceño (2002) and Strong (2006). In this last case the stylopodium appeared to be reduced to a mucro. The karyotype of *R. junciformis* with $2n = 18$ is very similar to that of *R. tenuis* subsp. *austro-brasiliensis* and *R. enmanuelis* (previously described by Vanzela et al. 2000; Arguelho et al. 2012). The similarities between these three species were also revealed after analysis with ISSR markers, suggesting that *R. junciformis* is relatively well-defined in terms of morphology and seems to be closer to *R. tenuis* subsp. *austro-brasiliensis* and *R. enmanuelis* than to *R. tenuis*.

Rhynchospora enmanuelis is morphologically very similar to *R. tenuis* subsp. *austro-brasiliensis*. Rocha & Luceño (2002) used measurements of leaves, length of the culms, spikelets and stylopodium, number of axillary corymbs (2–3) and, especially, the presence of two stamens, to describe *R. enmanuelis* as a new species. Except for the occurrence of two stamens, all other characteristics were previously described for *R. tenuis* subsp. *austro-brasiliensis* (Koyama 1972; Strong 2006). Our results showed both *R. enmanuelis* and *R. tenuis* subsp. *austro-brasiliensis* presenting three stamens, as well as other species of the *Rhynchospora tenuis* complex (Strong 2006). It is important to point out that the samples of *R. enmanuelis* studied here were collected in the exact same localities of the type specimen, which were studied by Rocha & Luceño (2002), and that samples of *R. tenuis* subsp. *austro-brasiliensis* were obtained in the common occurrence area described by Koyama (1972). Another important difference observed here is the presence of short staminodes in several spikelets in both *R. enmanuelis* and *R. tenuis* subsp. *austro-brasiliensis*. These structures

markers were jointly analyzed and compared, they point to new possibilities in respect to the resolution of species/subspecies associated with *R. tenuis*, and reinforce the need for evaluations using different macro and micromorphological features to enhance the taxonomic analysis in this genus.

Figure 3—Agarose gel demonstrating the repeatability tests, which shows the bands obtained after ISSR-PCR with the GA$_9$+C primer. 1) 100 bp, 2) *R. tenuis*, 3) *R. tenuis* subsp. *austro-brasiliensis*, 4) *R. enmanuelis*, 5) *R. junciformis* and 6) *R. breviuscula*. Note the similarities between *R. junciformis* and *R. tenuis* subsp. *austro-brasiliensis*, including *R. enmanuelis*, and the differences in relation to *R. tenuis*.

Rodriguésia 63(4): 775–784. 2012
Relationships between \textit{R. tenuis} and close species of \textit{Rhynchospora} sect. \textit{Tenues}

had not been mentioned for species of the \textit{R.} sect. \textit{Tenues} in the reviews of Barros (1960), Koyama (1972), Rocha & Luceño (2002) and Strong (2006).

Chromosome analysis revealed that \textit{R. emmanuelis} and \textit{R. tenuis} subsp. \textit{asturo-brasiliensis} possess very similar karyotypes, with $2n = 18$ and the 45S rDNA in the same chromosome pairs and position. Similarities were also observed after analysis of ISSR markers. The phenogram grouped these two species always in the same clade. The set of information obtained from morphologic, cytogenetic and molecular analyses strongly suggest a deep relationship between these two taxonomic entities.

Koyama (1972) used some features such as anther size, length and shape (curved when mature) of spikelets, and the distance between the corymbs in the culms to define \textit{R. tenuis} subsp. \textit{asturo-brasiliensis} as a subspecies of \textit{R. tenuis}. Our morphologic analysis also showed overlap of several values and characters between \textit{R. tenuis} and \textit{R. tenuis} subsp. \textit{asturo-brasiliensis}, except for subtle differences in the shape and size of achenes. Despite morphological features do not give support to consider \textit{R. tenuis} subsp. \textit{asturo-brasiliensis} as a new species, the information obtained from ISSR markers and karyotypes revealed that there are strong genetic differences between these two entities. The ISSR analysis separated \textit{R. tenuis} from \textit{R. tenuis} subsp. \textit{asturo-brasiliensis}, which exhibited a similarity of only 39%. Interestingly, \textit{R. tenuis} subsp. \textit{asturo-brasiliensis} and \textit{R. emmanuelis}, both with $2n = 18$, showed 60% genetic similarity, suggesting that these two species are distant from \textit{R. tenuis} with $2n = 4$. It is important to mention that intermediate chromosome numbers between \textit{R. tenuis} and \textit{R. tenuis} subsp. \textit{asturo-brasiliensis}, even in sympatric conditions, were not reported until date.

The occurrence of $7^{\text{II}} + 1^{\text{IV}}$ in some samples of \textit{R. tenuis} subsp. \textit{asturo-brasiliensis} indicate a possible polyploid origin for $2n = 18$, associated with dysploidy events. This explanation seems reasonable if we consider the basic number $x = 5$ of Cyperaceae (Löve et al. 1957) and the existence of karyotypes with $2n = 10$ in other species of the \textit{R.} sect. \textit{Tenues}, namely \textit{R. nanuzae} Luceño and Rocha, \textit{R. riparia} and \textit{R. emaciata} (Vanzela et al. 2000). The association of numeric and structural changes in the karyotype differentiation of Cyperaceae were well illustrated in studies within \textit{Rhynchospora} (Vanzela et al. 1996; Luceño et al. 1998; Vanzela et al. 2000; Arguelho et al. 2012) and \textit{Eleocharis} (Da Silva et al. 2008a, b, 2010).

The combined use of morphologic, cytogenetic and molecular techniques produced sufficient information to point out new paths toward the resolution of taxonomic problems in the \textit{R.} sect. \textit{Tenues}. Although we know the necessity of a broader

\begin{figure}
\centering
\includegraphics[width=\textwidth]{phenogram.png}
\caption{Phenogram of \textit{Rhynchospora tenuis} complex. The botton bar refers to Nei & Li (1979) genetic similarity. All populations were analyzed. Observe that \textit{R. tenuis} subsp. \textit{asturo-brasiliensis} and \textit{R. emmanuelis} are grouped together, closer to \textit{R. junciformis} than \textit{R. tenuis}. Numbers refer to bootstrap values.}
\end{figure}
analysis, including a larger number of populations and important species such as *Rhynchospora nanuzae*, *R. riparia* and *R. emaciata* in order to improve the taxonomic resolution in this group, our results have been effective to show the high similarity between *R. emmanuelis* and *R. tenuis* subsp. *austro-brasiliensis* in relation to other species of the sect. *Tenues*. The results reinforce also the need of a new taxonomic revision of the *Rhynchospora* sect. *Tenues*, especially in the nomenclatural status of *R. tenuis* subsp. *austro-brasiliensis* and *R. emmanuelis*.

Acknowledgments

The authors thank Dr. A. Leyva helped with English editing of the manuscript. Financial support: Fundação Araucária, CNPq and CAPES

References

