Abstract
We present a checklist for the ferns and lycophytes from Pico Paraná State Park, in Southern Brazil. The Park is entirely located at the Serra do Mar mountains, and represents an important remnant of the Atlantic Rain Forest with altitude achieving 1,887 m. In this locality is the Pico Paraná, the highest mountain in Southern Brazil. This study was focused on the altitudes above 1,000 m, which are mainly represented by dwarf forests and altitudinal fields. A total of 142 species were recorded, three of them (Ceradenia maackii, Diplazium tamandarei, and Stenogrammitis wittigiana) are only found in the park in Southern Brazil. Besides of the checklist of the species, we highlight some important aspects related to endangered species, geographic distribution, and life forms. The high level of endemism, the presence of endangered species, and the phylogenetic diversity as represented by distinct families of ferns and lycophytes show the biogeographic importance of this area for the conservation of these groups of plants.

Key words: Atlantic Rain Forest, endemism, highlands, richness, Southern Brazil.

Resumo
Nós apresentamos uma compilação das espécies de samambaias e licófitas coletadas no Parque Estadual Pico Paraná, sul do Brasil. O Parque está localizando dentro da Serra do Mar paranense, e representa um importante remanescente de Floresta Atlântica com altitude atingindo 1.887 m. Nesta localidade está o Pico Paraná, a montanha mais alta do sul do Brasil. Neste estudo foi investigado as áreas acima de 1.000 m, justamente nos pontos onde ocorrem floresta nebular e campos de altitude. No total foram registradas 142 espécies. Ceradenia maackii, Diplazium tamandarei, and Stenogrammitis wittigiana são encontradas apenas na área do parque no sul do Brasil. Além de apresentar a lista de espécies, este estudo destaca as espécies ameaçadas, distribuições geográficas e formas de vida das plantas. O alto nível de endemismo, a presença de espécies ameaçadas, a diversidade filogenética representada por várias famílias de samambaias e licófitas mostram a importância biogeográfica do Pico Paraná para a conservação destes grupos de plantas.

Palavras-chave: Floresta Atlântica, endemismo, ambiente de altitude, riqueza, Sul do Brasil.

Introduction
The mountain regions of the Neotropics present a high rate of diversity, richness and endemism for ferns and lycophytes (Tryon 1972, 1986; Moran 1995). Particularly, this richness is in part influenced by different degrees of temperature, luminosity and humidity, which vary accordingly to the different altitudinal gradients. Likewise, these different environmental conditions require specific morphological and physiological adaptations of the species (Lieberman et al. 1996; Kessler 2000; Safford 2007). As a result, the upper-montane forests and the highland fields frequently harbors a high levels of endemism (Martinelli 2007), and many species are also exclusive of these environments (Martinelli 2007).

Among the mountain ranges of the Serra do Mar in coastal Brazil, the Pico Paraná State Park is placed in an interesting biogeographic position. It is located in a confluence of different vegetation types, such as the Araucaria forests, grassland fields, and the Atlantic Rain Forest (Maack 2012; Labiak 2014). The Park is also a borderline region for the geographic distribution of many plant
species (Labiak 2014). Additionally, the Pico Paraná is the highest point in Southern Brazil and presents few botanically explored environments and peculiar geographical-climatical conformations (Maack 2012). This prompted us to carry out a more detailed botanical survey of its environments, focusing on those areas above 1,000 meters that are the less explored botanically.

Here, we present a checklist of the species of ferns and lycophytes from Pico Paraná State Park, highlighting the most important records for Southern Brazil, reporting the endangered species, and showing the data of the geographic distribution and life forms, as a contribution to the knowledge of the diversity presented in high montane forests in the Brazilian Atlantic Rain Forest.

Materials and Methods

Study site

The Pico Paraná State Park (PEPP) is located in the cities of Campina Grande do Sul and Antonina, in Paraná state, Southern Brazil. The park comprises an area of 4,334 hectares in the Serra do Ibitiraquire, a mountain chain that is part of the main range called Serra do Mar mountains. The Park is located between the coordinates 25°12’51.68”–25°17’52.91”S and 48°46’20.46”–48°52’58.71”W (Figs. 1, 2). Within the limits of the Park is located the Pico Paraná, which is the highest mountain in Southern Brazil, reaching 1,887 m in altitude (Figs. 1, 2). The current study was carried out in the areas between 1,000–1,887 m.

The PEPP is located within the Atlantic Rain Forest, and presents mainly elements of the Uppermontane and Campos de Altitude flora (sensu Veloso et al. 1992) (Fig. 2). This part of the Serra do Mar mountains is mainly composed by igneous and metamorphic rocks of pre-Cambrian origins (Bigarella 1978).

The climate in this area is considered as subtropical (Köppen 1948), with an average of annual temperature below 18 °C in the winter, and 22 °C in the summer (IAPAR 1994). Frost is common during the winter, and the average annual rainfall varies from 2,000–2,500 mm, depending on the altitude (Ferretti & Britez 2006).

Data collection

Fieldworks were carried out from April 2007 to March 2009, usually each two months (collection permit IAP 37/07, 2007). The specimens were deposited in the herbaria UPCB and MBM, and duplicates were also sent to other herbaria, when available. Also, collections of the herbaria MBM, an RB were consulted to search for potential collections from PEPP. The plants were
Figure 2 – Habitats in the Pico Paraná State Park – a. stream inside of the forest; b. cloud forest with the trunks of the tree covering by moss; c. upper montane forest; d. continuous fog in the highest latitudinal of the park; e. rocky outcrops; f. Pico Paraná; g. detail of the Pico Paraná; h. Campo de Altitude. (Photos: a. by Fernando B. Matos; b-e. by Jovani B.S. Pereira; f-h. by Paulo H. Labiak)
Results

A total of 142 species were recorded, corresponding to 64 genera and 19 families (see Table available in <https://dx.doi.org/10.6084/m9.figshare.5899600>). The ferns comprised 128 species in 58 genera and 17 families, whereas the lycophytes were represented by 14 species in six genera and two families. The families with the highest number of species were Polypodiaceae (29 spp.), Hymenophyllaceae (21 spp.), Dryopteridaceae (16 spp.), Aspleniaceae and Lycopodiaceae (12 spp., respectively), and Pteridaceae (11 spp.). The most representative genera in number of species were Hymenophyllum (13 spp.), Asplenium (11 spp.), Elaphoglossum (8 spp.), and Phlegmarius (7 spp.).

Special mention is given to Ceradenia maaackii (Fig. 3a), an endemic species from PEPP, which was described from recent collections in the studied area (Labiak & Pereira 2016). Besides C. maaackii, other two species are exclusively found in the PEPP in Southern Brazil: Diplazium tamandarei, and Stenogrammitis wittigiana (Fig. 3b).

As for endangered species, we found that Doryopteris paradoxa (Fig. 3c), Dicksonia sellowiana (Fig. 3d), Jamesonia insignis (Fig. 3e), Grammitis fluminensis (Fig. 3f), Phlegmarius nudus and P. christii are currently considered endangered species in Brazil (Martinelli & Moraes 2013). Furthermore, the poorly known species Doryopteris crenulans (Fig. 3g), Hymenophyllum magelanicum (Fig. 3h), H. peltatum, and Trichomanes luces are species considered as having priority in taxonomic studies, in order to access their actual conservation status (IBAMA 2008; Martinelli & Moraes 2013).

As for the species distribution ranges (Fig. 4a), we found that 40 species (28%) are endemic to the Brazilian Atlantic Rain Forest (sensu Oliveira-Filho & Fontes 2000), whereas 10% (14 spp.) are Pantropical, 60% (85 spp.) are Neotropical, and 1% (2 spp.) are widely distributed in Brazil.

Concerning the life forms (Fig. 4b), 24% (34 spp.) were epiphytes (sensu Benzing 1990; including one terrestrial climber species, Lomaridium acutum), 18% (26 spp.) were rupiculous, 39% (55 spp.) of the species were exclusively terrestrial, and 19% (27 spp.) were found in more than one type of habitat.

Discussion

The PEPP has shown a high taxonomic diversity of ferns and lycophytes. This diversity is similar to more species-rich environments such as montane forests, as recorded by Matos et al. (2010), and Schwartsburd & Labiak (2007).

The richness of the Polypodiaceae species found in PEPP can be related to the presence of graminit ferns such as Ceradenia (Fig. 3a), Cochlidium, Grammitis (Fig. 3f), Melpomene (Fig. 3i), Stenogrammitis (Fig. 3b), Lellingeria, Terpsichore, Leucotrichum and Moranopteris, which are particularly well distributed at high elevations in the New World (Parris 2009). Moreover, the richness of the Hymenophyllaceae, especially of Hymenophyllum (Fig. 3h,j), appears to be related to the cloud forests at higher altitudes where the genus is well diverse (Morton 1968).

The Paraná State is a borderline region for the geographic distribution of many plant species. Particularly, the PEPP seems to be the southern borderline for the geographic distribution of the Diplazium tamandarei, and Stenogrammitis wittigiana (Fig. 3b). It must also be pointed out the occurrences of Doryopteris paradoxa (Fig. 3c), Phlegmarius nudus, Hypolepis rugosula (Fig. 3k), and Amauropelta tamandarei, which are only known from few collections in Southern Brazil. Another interesting record is Plagiozygia fialhói (Fig. 3l), which is found at high altitudinal environments in Southeastern Brazil, and occurs only in the PEPP within the state of Paraná.

Regarding the percentage of the endemics species finding in the PEPP (28%, see Fig. 4a), it is higher than those recorded in areas at lower altitudes in Southern Brazil, such as 4% (8 spp.) by Gasper & Sevegnami (2010), 9% (14 spp.) by Schwartsburd & Labiak (2007), and 25% (15 spp.) by Labiak & Prado (1998). We attribute the high level of endemism in the PEPP to the varied number of environments, such as highlands fields, cloud forests, and rocky outcrops (Fig. 2a-h), which require of the species specific morphological and physiological adaptations to occur in these habitats (Safford 1999; Porembski 2007).

With respect to the life forms (Fig. 4b), the percentage of the epiphytic species was higher than the ones found in the Araucaria forest (19.7%;
Figure 3 – Ferns species found in the Pico Paraná State Park – a. Ceradenia maackii. b. Stenogrammitis wittigiana. c. Doryopteris paradoxa. d. Dicksonia sellowiana. e. Jamesonia insignis. f. Grammitis fluminensis. g. Doryopteris crenulans. h. Hymenophyllum magellanicum. i. Melpomene albicans. j. Hymenophyllum rufum. k. Hypolepis rugulosa. l. Plagiochiria fialhoi. Scale bars: a,e,g,j = 10 cm; b = 2 cm; c,f,h,i,k = 5 cm; d = 1 m; l = 15 cm. (Photos: a,b,e-g,k. by Paulo H. Labiak; c,d. by Fernando B. Matos; h-j,l. by Jovani B.S. Pereira)
It is also important to note the high percentage of the species which were found exclusively as rupiculous (18%; Fig. 4b). This value is higher than those recorded in other vegetation formations such as in the montane forest in Paraná (2.5%; 2 spp.) and in southern Bahia (5%; 9 spp.) (Dittrich et al. 2005; Matos et al. 2010; respectively), in the lowland and in the montane forest (4.2%; 8 spp.) (Gasper & Sevenegani 2010), and in the restinga (2.6%; 3 spp) (Salino et al. 2005). The number of rupiculous species may be related to the existence of markedly altitudinal environments such as rocky outcrop and rocky cliffs in the cloud forests as well as streams over rocks within the forest (Fig. 2e-h).

In conclusion, the altitudinal environment of the PEPP appears to offer the ideal conditions for the establishment of the various groups of ferns and lycophytes which results not just in the number of species, but also in the diversity of life forms. Furthermore, the high level of endemism, the presence of endangered species, and the phylogenetic diversity (as represented by distinct families of ferns and lycophytes) highlight the biogeographic importance of this area for the conservation of these groups of plants.

Acknowledgments

The authors thank Fabricio Meyer, Felipe Marinero, Fernando Matos, Marcelo Reginato, Mathias Meyer and Pedro Schwartsburd, for their help during the fieldworks. We are also grateful to the following specialists for identifications: Jefferson Prado (Megalastrum), Claudine Mynssen (Diplazium), Fernando Matos and Alejandra Vasco (Elaphoglossum), Mónica Ponce and Alexandre Salino (Thelypteridaceae), Pedro Schwartsburd (Hypolepis). We also thank Lana Sylvestre and two anonymous reviewers for helpful comments on the manuscript. This research was partially funded by grants from CNPq to Paulo Labiak (304835/2013-7), and to Jovani Pereira (245951/2012-1).

References

