Aedes aegypti and Aedes albopictus (Diptera: Culicidae): coexistence and susceptibility to temephos, in municipalities with occurrence of dengue and differentiated characteristics of urbanization

Aedes aegypti and Aedes albopictus (Diptera: Culicidae): coexistência e susceptibilidade ao temepfós, em municípios com ocorrência de casos de dengue e diferentes características de urbanização

Josiane Somariva Prophiro1,2, Onilda Santos Silva3, Jonny Edward Duque Luna2, Carla Fernanda Piccoli1, Luiz Alberto Kanis4 and Mario Antonio Navarro da Silva2

ABSTRACT

Introduction: The aim of the present study was to verify the coexistence between Aedes aegypti and Aedes albopictus populations in municipalities of the States of Paraná and Santa Catarina with different urbanization profiles where dengue occurs and evaluate their susceptibility to the organophosphate temephos. Methods: The number of eggs per ovitraps were counted and incubated for hatching to identify the species. Data analysis of the populations was conducted to determine randomness and aggregation, using the variance-to-mean ratio (index of dispersion). Susceptibility to temephos was evaluated by estimation of the resistance ratios RR50 and RR95. Aedes aegypti samples were compared with the population Rockefeller and Aedes albopictus samples were compared with a population from the State of Santa Catarina and with the Rockefeller population. Results: Coexistence between Aedes aegypti and Aedes albopictus and the aggregation of their eggs were observed at all the sites analyzed in the State of Paraná. Conclusions: All the Aedes aegypti populations from the State of Parana showed alteration in susceptibility status to the organophosphate temephos, revealing incipient resistance. Similarly, all the Aedes albopictus populations (States of Paraná and Santa Catarina) presented survival when exposed to the organophosphate temephos.

Keywords: Dengue. Aedes aegypti. Aedes albopictus. Coexistence. Organophosphate.

RESUMO

INTRODUCTION

Aedes aegypti is the primary vector of viral serotypes that cause dengue and urban yellow fever in the Americas, where the incidence of these arboviruses has increased significantly in the last 25 years1. Aedes albopictus is considered a secondary vector of dengue virus in the Old World2 and in Brazil, its presence was first reported in 19863. Currently, it is widely distributed in the country, particularly in the southern and southeastern regions. However, little is known regarding the susceptibility of Ae. albopictus to insecticides and the influence of coexistence with Ae. aegypti. Currently, Ae. albopictus is not implicated as a transmitter of the dengue virus in Brazil, so there is no control program for this Culicidae. Generally, the occurrence of dengue fever epidemics is directly related to the presence and density of vectors, when viral circulation occurs. These mosquito species can often coexist in artificial containers in urban and periurban localities4. However, immature Ae. albopictus may also inhabit natural containers, such as bromeliads, bamboo and holes in the tree trunks5. This plasticity of Ae. albopictus to colonize artificial containers and natural breeding sites and to coexist with other species in urban and periurban localities can increase its dispersion to new areas where control is impaired. In addition, since Ae. albopictus can colonize bromeliads, it may also expand its distribution to more protected areas. Most importantly, arbovirus circulation may cause the emergence of diseases within this ecological system6.

Due to the ability of both species to coexist and colonize the same breeding places, it is expected that the pressure exerted by control with insecticides affects these species in very similar manner. Changes in the susceptibility of Ae. albopictus to chemical insecticides, similar to that which has been occurring with Ae. aegypti, could be observed in the near
future29. This is a problem that can be detected in advance and resulted in the inclusion of this species in the National Network for the Resistance Monitoring of Ae. aegypti to Insecticides (Rede Nacional de Monitoramento da Resistência de Ae. aegypti, MoReNAa)9-11.

The emergence of resistant populations has caused serious problems for mosquito control. Changes in susceptibility have been identified for all classes of insecticides, directly affecting the re-emergence of diseases transmitted by vectors12. Regardless of important advances in alternative methodologies, chemical insecticides are a powerful tool against vectors and will continue to play an important role in integrated control13, at least until the discovery of alternative methods that permit fast, safe, and sustainable control of vectors.

In the process of entomological surveillance, it is very important to monitor the biological behavior of these vectors and the resistance development process14.

The objective of this study was to verify the coexistence of Ae. aegypti and Ae. albopictus populations and their aggregation and susceptibility to the insecticide temephos, in municipalities with differentiated urbanization characteristics where dengue occurs.

METHODS

Area of study and collection of material

In partnership with the Secretary of State for Health of Paraná, oviposition traps (ovitraps) were set with a 500mL of 10% hay solution. The ovitraps (345) were randomly distributed in peridomiciliary areas at various points of the following municipalities: Ubiratã, Santa Helena, Foz do Iguaçu South Sector, and Foz do Iguaçu North Sector. In the City of Ubiratã, two collections were conducted due to low hatching. These municipalities had autochthonous cases of dengue in the summer of 2006-2007. Besides Ae. albopictus populations in the State of Paraná, a population of Ae. albopictus in the town of Tubarão, State of Santa Catarina, was also evaluated, which had no history of temephos application. Monitoring the susceptibility of Aedes spp. the State of Santa Catarina is very important because this state is the only state in Brazil that has no record of autochthonous case of dengue (Figure 1).

The ovitraps were randomly placed per area for 5 days in peridomiciles inside the urban area (in residential neighborhoods and downtown) of the municipalities with confirmed records of dengue and/or Aedes spp. and according to the recommendations of the National Health Foundation10.

Study of Aedes populations

In the laboratory, the eggs of each ovitrap were counted (no species distinction) and placed individually for hatching, rearing and subsequent recording of males and females of both species (species distinction). Adults were then placed in cages to obtain the F1 larvae generation, which was used in the temephos susceptibility bioassays. The whole process, including egg storage and adult breeding, was performed under controlled temperature (25 ± 2°C) and relative humidity (80 ± 10%) under 1h photophase.

Data analysis of the populations to determine randomness and aggregation and the distribution of eggs per ovitrap was calculated using variance-to-mean ratio (index of dispersion), here called equation 1.

\[
I = \frac{S^2}{\bar{m}}
\]

Values lower than 1 suggest regular or uniform spatial arrangement, values equal to 1 indicate random spatial arrangement, while values significantly higher than 1 show aggregate arrangement15,16.

The aggregation index was indicated by the k parameter of the negative binomial distribution. Negative k values indicate uniform distribution, low and positive values (k < 2) indicate a highly aggregated arrangement, k values ranging from 2 to 8 indicate moderate aggregation and k values above 8 (k > 8) indicate a random arrangement16,18.

FIGURE 1 - Map of Brazil, showing the cities analyzed in the State of Parana and Santa Catarina, Brazil.
The results were analyzed with the program Statistica version 7.0. Only data with $p < 0.05$ were considered significant. The nonparametric tests Kruskal-Wallis (KW) and Mann-Whitney U (MW) were applied in order to verify statistical differences between the species and municipalities evaluated.

Temephos bioassays

The larvicide used was 90% technical grade temephos, batch 002/2005, manufactured by the Fersol Mairinque Laboratory, City of São Paulo. The bioassays consisted of a dose-response of temephos with 640 late third or early fourth instars of each *Ae. aegypti* and *Ae. albopictus* populations. Four replicates of 20 larvae, totaling 80 larvae per concentration were exposed to eight different concentrations of temephos, including the diagnostic dose. This diagnostic concentration was applied to qualitatively detect the presence of individuals resistant to the susceptible strain, 0.0060 mg/L (as previously determined by our laboratory) for this same batch of insecticide, corresponding to twice the CL99 of the Rockefeller susceptible strain, as recommended elsewhere. Additionally, four replicates of 20 larvae, totaling 80 larvae of each population were exposed to ethanol solvent, as negative control.20,21

The Rockefeller reference strain was used as control for *Ae. aegypti* and *Ae. albopictus*. Due to lack of a reference population of *Ae. albopictus* for analysis of susceptibility to insecticides, a population of the Rockefeller reference strain was used.

Larval mortality was observed after 24h of exposure to temephos. Larvae were considered to have died when they were unable to reach the water surface when touched. The tests were repeated four times on different days and all tests were performed under controlled temperature (25°C ± 1) and photoperiod (12:12) in a climatic chamber model CDG-347 Fanem.20,22

Criteria for evaluation of susceptibility and statistical analysis

The criteria used to detect qualitative changes in susceptibility status of the populations analyzed followed the protocol of Davidson & Zahar: a) mortality above 98% in response to the diagnostic concentration is considered susceptible; b) between 98 and 80% suggests incipient resistance status; and c) less than 80% mortality indicates resistance.

The rate of resistance (RR50 and RR95) as a quantitative indicator was calculated by dividing the lethal concentrations (LC50 and LC95) of each population studied by the lethal concentrations (LC50 and LC95) of the Rockefeller colony, for *Ae. aegypti* and *Ae. albopictus*. Resistance levels were classified as low (RR < 5.0), medium (5.0 < RR < 10.0)24. To determine the lethal concentrations (LC50 and LC95), X2 test, slope and confidence intervals from the GW-Basic Probit program were used.25

Temephos bioassays

Following exposure of the populations evaluated to the diagnostic concentration 0.0060mg/L, analysis verified that the population of *Foz do Iguaçu*, in both the south and north sectors, presented status resistant. For the municipalities of Ubiratã and Santa Helena, the *Ae. aegypti* populations were susceptible to temephos. All the *Ae. albopictus* populations evaluated, from Paraná and the population of Tubarão, Santa Catarina, showed survival when exposed to the diagnostic concentration of the organophosphate temephos.23

For the populations of *Ae. aegypti* from municipalities of the State of Paraná submitted to bioassays using different concentrations (CM) of temephos, the RR50 was: 1.70 for Ubiratã, PR; 1.65 for Santa Helena, PR; 3.62 for *Foz do Iguaçu* south, PR; and 3.13 for *Foz do Iguaçu* north, PR (Table 4). For the populations of *Ae. Albopictus* from municipalities of Santa Catarina and Paraná submitted to bioassays using different concentrations (CM) of temephos, the RR50 was: 2.01 for Tubarão, SC; 1.97 for Ubiratã, PR; 2.36 for Santa Helena, PR; 2.23 for *Foz do Iguaçu* south, PR; and 2.58 for *Foz do Iguaçu* north, PR (Table 4).

In general, the slope values of the *Ae. aegypti* and *Ae. albopictus* populations studied were lower compared to those obtained of the Rockefeller strain. This finding confirmed their heterogeneity compared to the reference strain and the differences in their response to the insecticide. The lethal concentrations and resistance rates of populations in all the municipalities are presented for comparison in Table 4.

<table>
<thead>
<tr>
<th>Table 1</th>
<th>Aedes aegypti and Aedes albopictus collected with ovitraps in the municipalities of Ubiratã, Santa Helena, Foz do Iguaçu north and Foz do Iguaçu south during the summer of 2006-2007.</th>
</tr>
</thead>
<tbody>
<tr>
<td>Locality</td>
<td>Ovitraps<sup>a</sup></td>
</tr>
<tr>
<td>Ubiratã 1</td>
<td>49/30</td>
</tr>
<tr>
<td>Ubiratã 2</td>
<td>97/54</td>
</tr>
<tr>
<td>Santa Helena</td>
<td>50/39</td>
</tr>
<tr>
<td>Foz do Iguaçu south</td>
<td>74/44</td>
</tr>
<tr>
<td>Foz do Iguaçu north</td>
<td>75/50</td>
</tr>
</tbody>
</table>

^aOvitraps positive: number of positive ovitraps x 100/total number of ovitraps, n: number total, ♀: female.
TABLE 2 - Dispersion indices and K parameter, spatial oviposition arrangement of Aedes spp. in the municipalities of Ubiratã, Santa Helena, Foz do Iguaçu south and Foz do Iguaçu north during the summer of 2006-2007.

<table>
<thead>
<tr>
<th>Localities</th>
<th>Dispersion indices</th>
<th>K Parameter</th>
</tr>
</thead>
<tbody>
<tr>
<td>Ubiratã 1</td>
<td>77.43</td>
<td>0.43</td>
</tr>
<tr>
<td>Ubiratã 2</td>
<td>35.33</td>
<td>1.49</td>
</tr>
<tr>
<td>Santa Helena</td>
<td>69.92</td>
<td>0.98</td>
</tr>
<tr>
<td>Foz do Iguaçu south</td>
<td>46.85</td>
<td>1.03</td>
</tr>
<tr>
<td>Foz do Iguaçu north</td>
<td>95.72</td>
<td>0.59</td>
</tr>
</tbody>
</table>

TABLE 3 - Bioassays with the diagnostic concentration 0.0060mg/L (calibrated with the Rockefeller strain) in larvae of Aedes aegypti and Aedes albopictus of Paraná and Santa Catarina States, in the summer of 2006-2007.

<table>
<thead>
<tr>
<th>Municipalities</th>
<th>Mortality (%)</th>
<th>species</th>
<th>CL50 (IC)</th>
<th>CL95 (IC)</th>
<th>Slope</th>
<th>X²</th>
<th>RR50</th>
<th>RR95</th>
</tr>
</thead>
<tbody>
<tr>
<td>Rockefeller</td>
<td>Aedes aegypti</td>
<td>1.67 (1.64 ± 1.70)</td>
<td>2.93 (2.82 ± 3.06)</td>
<td>7.68 ± 0.14</td>
<td>2.19</td>
<td>1</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td></td>
<td>Aedes albopictus</td>
<td>3.33 (3.27 ± 3.39)</td>
<td>5.90 (5.74 ± 6.08)</td>
<td>6.63 ± 0.16</td>
<td>5.92</td>
<td>1.99</td>
<td>2.01</td>
<td></td>
</tr>
<tr>
<td>Tubarão (SC)</td>
<td>Aedes albopictus</td>
<td>95.25 ± 1.69</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Ubiratã (PR)</td>
<td>Aedes aegypti</td>
<td>2.83 (2.44 ± 2.38)</td>
<td>4.98 (3.92 ± 6.38)</td>
<td>6.71 ± 0.62</td>
<td>8.47</td>
<td>1.69</td>
<td>1.70</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Aedes albopictus</td>
<td>98.44 ± 0.96</td>
<td>94.38 ± 0.58</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Santa Helena (PR)</td>
<td>Aedes aegypti</td>
<td>75.94 ± 9.78</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Aedes albopictus</td>
<td>91.56 ± 1.26</td>
<td>90.94 ± 0.96</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Foz do Iguaçu south</td>
<td>Aedes aegypti</td>
<td>2.59 (2.40 ± 2.75)</td>
<td>4.83 (4.60 ± 5.14)</td>
<td>6.10 ± 0.49</td>
<td>0.88</td>
<td>1.55</td>
<td>1.65</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Aedes albopictus</td>
<td>3.57 (3.45 ± 3.68)</td>
<td>6.92 (6.62 ± 7.27)</td>
<td>5.72 ± 0.20</td>
<td>4.95</td>
<td>2.14</td>
<td>2.36</td>
<td></td>
</tr>
<tr>
<td>Foz do Iguaçu north</td>
<td>Aedes aegypti</td>
<td>3.83 (3.61 ± 4.03)</td>
<td>10.62 (9.96 ± 11.44)</td>
<td>3.71 ± 0.17</td>
<td>3.6</td>
<td>2.29</td>
<td>3.62</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Aedes albopictus</td>
<td>3.60 (3.50 ± 3.69)</td>
<td>6.53 (6.25 ± 6.86)</td>
<td>6.35 ± 0.21</td>
<td>5.11</td>
<td>2.15</td>
<td>2.23</td>
<td></td>
</tr>
</tbody>
</table>

TABLE 4 - Municipalities studied, species and generation used, lethal concentrations (microgram/liter) and respective confidence interval, slope and Chi square ratio of resistance (RR50 and RR95) in populations of Aedes aegypti and Aedes albopictus of municipalities in State of Paraná and Aedes albopictus of State of Santa Catarina, in the summer of 2006-2007.

<table>
<thead>
<tr>
<th>Municipalities</th>
<th>Species</th>
<th>CL50 (IC)</th>
<th>CL95 (IC)</th>
<th>Slope</th>
<th>X²</th>
<th>RR50</th>
<th>RR95</th>
</tr>
</thead>
<tbody>
<tr>
<td>Rockefeller</td>
<td>Aedes aegypti (F1)</td>
<td>2.83 (2.44 ± 2.38)</td>
<td>4.98 (3.92 ± 6.38)</td>
<td>6.71 ± 0.62</td>
<td>8.47</td>
<td>1.69</td>
<td>1.70</td>
</tr>
<tr>
<td></td>
<td>Aedes albopictus (F1)</td>
<td>3.35 (3.27 ± 3.44)</td>
<td>5.78 (5.53 ± 6.06)</td>
<td>6.96 ± 0.25</td>
<td>5.49</td>
<td>2.0</td>
<td>1.97</td>
</tr>
<tr>
<td>Tubarão (SC)</td>
<td>Aedes aegypti (F1)</td>
<td>2.59 (2.40 ± 2.75)</td>
<td>4.83 (4.60 ± 5.14)</td>
<td>6.10 ± 0.49</td>
<td>0.88</td>
<td>1.55</td>
<td>1.65</td>
</tr>
<tr>
<td></td>
<td>Aedes albopictus (F1)</td>
<td>3.57 (3.45 ± 3.68)</td>
<td>6.92 (6.62 ± 7.27)</td>
<td>5.72 ± 0.20</td>
<td>4.95</td>
<td>2.14</td>
<td>2.36</td>
</tr>
<tr>
<td>Santa Helena (PR)</td>
<td>Aedes aegypti (F1)</td>
<td>3.83 (3.61 ± 4.03)</td>
<td>10.62 (9.96 ± 11.44)</td>
<td>3.71 ± 0.17</td>
<td>3.6</td>
<td>2.29</td>
<td>3.62</td>
</tr>
<tr>
<td></td>
<td>Aedes albopictus (F1)</td>
<td>3.60 (3.50 ± 3.69)</td>
<td>6.53 (6.25 ± 6.86)</td>
<td>6.35 ± 0.21</td>
<td>5.11</td>
<td>2.15</td>
<td>2.23</td>
</tr>
<tr>
<td>Foz do Iguaçu south</td>
<td>Aedes aegypti (F1)</td>
<td>3.73 (3.53 ± 3.91)</td>
<td>9.16 (8.66 ± 9.76)</td>
<td>4.21 ± 0.19</td>
<td>8.58</td>
<td>2.23</td>
<td>3.13</td>
</tr>
<tr>
<td></td>
<td>Aedes albopictus (F1)</td>
<td>3.61 (3.48 ± 3.72)</td>
<td>7.55 (7.21 ± 7.97)</td>
<td>5.12 ± 0.20</td>
<td>1.76</td>
<td>2.16</td>
<td>2.58</td>
</tr>
</tbody>
</table>

DISCUSSION

Study of Aedes populations

In the municipality of Ubiratã, collections 1 and 2, differences occurred between the predominance of species collected for Aedes albopictus (Ubiratã 1: 88% and Ubiratã 2: 84%) and Aedes aegypti (Ubiratã 1: 12% and Ubiratã 2: 16%, respectively). Aedes albopictus predominated where there was higher density of inhabitants in urban centers than in rural areas. The municipality of Ubiratã is a wooded site, which may have favored the presence and/or increased survival of Aedes albopictus in relation to Aedes aegypti.

In this study, coexistence of Aedes aegypti and Aedes albopictus was observed in all the municipalities studied in the State of Paraná, similar to that observed by Gomes et al and Fantinatti et al. Fantinatti et al evaluated the abundance and aggregation of Aedes aegypti and Aedes albopictus eggs in several municipalities of Paraná and described the coexistence of these species in all the sites studied.

It is important to emphasize that the ovitraps in Ubiratã were installed in 2007, in the same period of the dengue outbreak, which registered cases of autochthonous dengue cases. Currently, there is no official record of the dengue virus transmission by Aedes albopictus in Brazil. Nevertheless, only by viral serotype isolation and the confirmation of virus transmission competence of Aedes albopictus...
populations from Ubiratã, will it be possible to confirm whether this species is capable of transmitting the virus dengue in the area studied.

Different from other locations, in the collections from Foz do Iguaçu, in both the South and North sectors, a higher prevalence of *Ae. aegypti* than *Ae. albopictus* was verified. This situation could be related to the higher density of inhabitants in urban centers than in rural areas. In the municipality of Santa Helena, the presence of *Ae. aegypti* and *Ae. albopictus* was equivalent. The same occurred with the mean population in rural and urban areas. These data corroborate studies by Braks et al, who described that the habitat affects the abundance of *Ae. aegypti* and *Ae. albopictus* in both southeastern Brazil and Florida. They observed a predominance of *Ae. aegypti* in highly urbanized areas and *Ae. albopictus* in rural areas and similar abundance of both species in suburban areas.

Bioassays with larvical

Mortality among larvae using the Rockefeller diagnostic concentration on *Ae. aegypti* populations in Foz do Iguaçu north and south was less than 80%, indicating that the process of selective resistance has been established. Only the *Ae. aegypti* populations of Ubiratã and Santa Helena were considered susceptible to temephos.

Although *Ae. albopictus* is not targeted in the control programs, all species populations from the State of Paraná and Santa Catarina were analyzed and showed survival against the organophosphate temephos when exposed to the diagnostic concentration. These results suggest that in locations where coexistence of *Ae. aegypti* and *Ae. albopictus* occurs both species are being exposed to the same process of selective pressure due to the insecticides applied. Thus, the high co-occurrence of *Ae. aegypti* and *Ae. albopictus* in Brazil, in areas under intense selective pressure of insecticides, may justify the survival of *Ae. albopictus* populations tested for temephos. These results also suggest that *Ae. albopictus* populations could become resistant to temephos in the near future, as is currently occurring with *Ae. aegypti* in several Brazilian states. In addition, the laboratory sample of *Ae. albopictus* from Santa Catarina probably originates from an environment with previous use of organophosphates in agriculture and thus, certain mechanisms of persistence or even resistance to this compound may have been previously selected.

Changes in the susceptibility status of *Ae. aegypti* to temephos have been previously reported in Brazil and in Malaysia, Thailand, India, Cambodia and Venezuela. For *Ae. albopictus*, monitoring of the development of resistance to temephos has been reported in Malaysia and Thailand, and India and Italy.

Following the criteria of Mazzari & Georghiou, all *Ae. aegypti* (PR) and *Ae. albopictus* populations (PR and SC) presented RR and RR values at low levels. The same was determined by Duque et al and Duque et al for *Ae. aegypti* populations in other municipalities of the State of Paraná, including Curitiba, Foz do Iguaçu, Paranavai, Maringá, Iporã, Cambé and Jacarezinho.

The RR and RR values determined by Duque et al for *Ae. aegypti* populations of Foz do Iguaçu, collected in 2005, were 2.6 and 3.9, respectively. In the present study, the values of RR and RR determined for the populations of Foz do Iguaçu, collected in 2007, were 2.29 and 3.62 for Foz do Iguaçu south and 2.23 and 3.13 to Foz do Iguaçu north, respectively. In comparisons between the values of RR and RR of Duque et al with the RR and RR of this study, a decrease was verified, however, to explain the decrease in RR and RR values, long-term monitoring of these populations is required.

The RR and RR values observed in Paraná and Santa Catarina for the populations studied are considered low, similar to those for some municipalities in São Paulo. However, in several Brazilian states (Rio de Janeiro, Alagoas, Sergipe and Ceará), medium and high resistance status was observed. According to Câmara et al and Duque et al, the southern region of Brazil shows lower values for RR and RR compared with other regions. This is probably due to reduced vector densities in the cold seasons, together with lower selective pressure due to less intense use of insecticides.

Although the *Ae. aegypti* and *Ae. albopictus* populations tested showed low levels of susceptibility to temephos, constant resistance monitoring of these populations to insecticides is of great importance. Such studies can provide early warning of the problem and alert us to the need for new strategies to control the vectors of dengue in southern Brazil in the coming years.

ACKNOWLEDGMENTS

The authors are grateful to the Secretary of State for Health of Paraná, particularly to Allan Martins, the coordinator of the Entomology Division, for his cooperation in sending the material for the bioassays. The authors would also like to thank André Souza Leandro from the Secretary of State for Science and Technology of Paraná and the Zoonosis Control Center in Foz do Iguaçu.

CONFLICT OF INTEREST

The authors declare that there is no conflict of interest.

FINANCIAL SUPPORT

Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq).

REFERENCES

